James Madison University

first graduates logoAbout this series: This is the 18th installment in a series of features celebrating the first graduating class of the JMU Department of Engineering. When JMU started the school four years ago, it set out to develop a program unlike any other. Through this series, you will see how the students and faculty have done just that, concentrating their efforts on teaching and learning the four pillars of sustainability that future engineers must embrace, not only to succeed in their profession, but to make meaningful contributions in the communities they choose to work in. The series will continue each week through May, when graduates of the JMU Department of Engineering take part in the spring commencement ceremony for the first time.

'Non-traditional Approach' Paved Way for Prins' Engineering Career

Dr. Rob Prins chose the vocational route in high school rather than pursue science and math.

The choice was a good one. What he learned helped him get a job as a designer at a steel fabrication company near his home in Grand Rapids, Mich.

About a year and a half after landing the job, Prins said he found out there were things he wanted to do at the company that he wasn't able to do with his educational background. He decided to enroll at Grand Rapids Junior College.

"I didn't intend at that time to pursue an engineering degree, but one thing led to another and over the course of the next four years I completed the equivalent of two years of pre-engineering," he said.

After completing the junior college work, Prins transferred to Michigan Technological University and earned a bachelor of science degree in mechanical engineering.

Rob Prins "It was a non-traditional approach," said Prins, an assistant professor of engineering. "Once I was working at this company I could see practical applications of math and science. At the junior college I recognized that the sorts of things we would talk about at work as somewhat nebulous concepts, such as the amount of stress caused by various loading scenarios, had very specific physical definitions. I was really fired up to be able to learn exactly what the definition of stress was and how to calculate it. To find out that math and science supported such analyses fueled my interest in academics."

The math and science courses were challenging at first, he said, but after taking a few of them, he gained an appreciation for the subjects. Prins went on to get a master's degree in mechanical engineering at the University of Virginia, where he worked with optical methods for making non-contact measurements.  This experience led him to a job at Perceptron, Inc., a company that develops and markets machine vision systems.  After six years in industry, Prins returned to school and earned his doctorate in mechanical engineering from Virginia Tech, focusing on non-contact force measurement with magnetic bearings.  

"In education, we talk about the importance of having students being engaged in what they're doing and to have some broader sense of what they're doing during their academic career. The path I took provided me with the engagement and the broader context first, and I back-filled the academics." Prins said.

As a teacher, Prins strives to give his students a holistic experience that includes theory and practical experience. The best projects, he said, are ones requiring students to go beyond merely designing, building and using something. Students should model their device as part of their design process, then verify that it either acts or does not act as predicted, he said. "I prefer to have that feedback. Also, getting them to take measurements requires them to work with data acquisition and data analysis, both of which are important for engineers to have some hands-on experience with."

While he had rewarding experiences in his industry career, Prins said he has no regrets about becoming a teacher. "In industry, a lot of the reward came from working with cool technologies and developing applications for those technologies. As a teacher I enjoy working with students on projects and helping them learn to apply engineering principles in realistic situations.

Series At A Glance