DEEP RECYCLE: Beyond GNNs for Large-Scale
Community Detection

Caleb Fernandes Audrey Knight
Department of Computer Science Department of Mathematics
University of South Florida Towson University
ctkcl@jmu.edu ynhcf8@jmu.edu

Samuel Stoke
Department of Electrical and Computer Engineering
Virginia Tech
samuelstoke@vt.edu

Behnaz Moradi-Jamei
Department of Mathematics and Statistics
James Madison University
moradibx@jmu.edu

Abstract

Graph Neural Networks (GNNs) typically aggregate local neighborhood informa-
tion without explicitly capturing higher-order structural features, such as cycles,
limiting their effectiveness in unsupervised community detection tasks. We intro-
duce ReCYCLE Net, a novel cycle-aware GNN framework leveraging Renewal
Non-Backtracking Random Walks (RNBRW) to quantify cycle participation, sig-
nificantly enhancing inductive biases for community detection. RNBRW weights
are integrated into Graph Attention Networks (GAT) as attention biases and loss
coefficients, improving structural coherence and community boundary detection.
Experiments conducted on benchmark datasets (Karate Club, Political Books,
Cora, DBLP, Amazon) demonstrate substantial improvements over baselines in
modularity, normalized mutual information (NMI) and adjusted Rand index (ARI).

1 Introduction

Deep ReCYCLE: Learning to Reason with Cycles for Community Detection

In the interconnected world around us, from social media networks to biological systems, communities
naturally form through complex patterns of relationships. However, one hammer doesn’t fit all in
community detection. Different domains exhibit structurally distinct mechanisms for community
formation that require domain-specific approaches rather than generic, one-size-fits-all solutions.

In meaningful cycle-rich domains such as social networks, biological interaction graphs, and knowl-
edge graphs, one of the most fundamental yet overlooked patterns is the presence of cycles: friendship
triangles that indicate trust, feedback loops that represent functional pathways, and citation circles
that reveal research communities. These aren’t just mathematical curiosities but essential building
blocks with semantic meaning that reveal how communities actually form and function in these
specific contexts.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

Traditional community detection methods apply universal algorithms that treat all connections equally
across domains, missing the critical insight that community detection methods should be tailored to
domain-specific structural patterns. More importantly, in meaningful cycle-rich graphs is essential
for understanding how these networks actually organize themselves.

While classical algorithms like Louvain are fast, they remain domain-agnostic and ignore crucial
structural patterns that carry semantic meaning in specific contexts. Modern machine learning
approaches using Graph Neural Networks (GNNSs) can learn from data, but typically apply generic
message-passing schemes that diffuse information in ways that wash out the very domain-specific
cycle patterns that encode meaningful community signals.

Our research introduces Deep ReCYCLE, a novel framework that recognizes the need for domain-
tailored community detection by putting meaningful cycle reasoning at the center of the learning
process. We utilize a method called Renewal Non-Backtracking Random Walks (RNBRW) that
efficiently quantifies how much each connection participates in meaningful cycles, without the
computational burden of enumerating every cycle in the network [MJSPCT21]].

This cycle-awareness is integrated into neural networks through two key innovations:

1. Teaching the network to pay more attention to connections that participate in meaningful
cycles when aggregating information

2. Training the network with objectives that explicitly reward cycle-based community struc-
ture—both tailored specifically for domains where cycles encode semantically meaningful
community signals

We tested our approach on networks ranging from the classic 34-node Karate Club to the massive 2.4-
million-node Amazon product networks. The results demonstrate that domain-tailored, meaningful
cycle-aware learning consistently outperforms generic methods, achieving accuracy scores of 0.88
on benchmark datasets. Our ablation studies confirm that both components of cycle reasoning are
necessary for optimal performance.

This work opens new possibilities for understanding complex networks by recognizing that effective
community detection requires domain-specific reasoning. In meaningful cycle-rich domains, the
patterns we often overlook (the cycles with semantic meaning) may be the very patterns that matter
most for revealing hidden community structures in everything from drug discovery networks to social
recommendation systems.

2 Background

Graph Neural Networks (GNNs) have revolutionized learning on graph-structured data, particularly in
tasks like community detection, where capturing cohesive subgraphs is essential. Traditional GNNss,
such as Graph Convolutional Networks (GCNs) [KW 17]], perform semi-supervised classification by
aggregating node features through localized convolutions based on the graph Laplacian. However,
GCNs suffer from limitations including over-smoothing, sensitivity to graph noise, and inability
to handle inductive settings or variable-sized inputs. As analyzed by Li et al. [LHW18]], repeated
convolutions in GCNs equate to Laplacian smoothing, which can collapse features and degrade
performance in semi-supervised learning. To address label scarcity, they propose co-training with
partially absorbing random walks and self-training via confident predictions, enhancing robustness.

Attention mechanisms have been introduced to mitigate these issues. Velickovié et al. [VCCT 18]
propose Graph Attention Networks (GATs), which learn dynamic weights for neighbor messages
via a masked attention mechanism. This allows GAT's to prioritize important connections, enabling
parallelism, inductive generalization, and noise resistance. However, standard GATs overlook edge
features and rely heavily on node attributes, necessitating engineered features for effective attention.
Wang et al. [WYHL19] extend GAT with Constrained GAT (C-GAT), incorporating large-margin
constraints on attention coefficients to preserve class boundaries and structural regularization to
combat over-fitting, theoretically reducing over-smoothing.

For inductive and scalable learning on large graphs, Hamilton et al. [HYLI18] introduce Graph-
SAGE, which aggregates features from sampled neighborhoods using mean, long short-term memory
(LSTM), or pooling functions. Unlike transductive methods, GraphSAGE generalizes to unseen
nodes, outperforming baselines like DeepWalk on diverse datasets. Zeng et al. [ZZS™20] further

scale GNNs with GraphSAINT, sampling subgraphs (node/edge/random walk) to avoid neighbor
explosion, achieving high accuracy on massive graphs like Amazon. Chiang et al. [CLS™19]] propose
Cluster-GCN, clustering nodes (e.g., via METIS) and training on cluster unions for efficiency, scaling
to Amazon2M while reducing memory.

Robustness remains a challenge, as GNNs are vulnerable to adversarial perturbations. Jin et al.
[IML™20] present Pro-GNN, which jointly optimizes for a clean graph structure (via sparsity, low-
rank, and smoothness priors) and GNN parameters, effectively defending against attacks. This is
particularly relevant for real-world applications, though assumptions like sparsity may not hold for
dense graphs.

In community detection, foundational surveys like Fortunato [FH16]] emphasize probabilistic models
over edge-frequency methods, advocating null models (e.g., random graphs) for significance testing.
Recent work by Moradi-Jamei et al. [MJKCK21]] demonstrates that Renewal Non-Backtracking
Random Walks (RNBRW) enhance community detection when coupled with Louvain, by pre-
weighting edges based on cyclic structures to improve partitioning quality in sparse graphs. Our work
builds directly on RNBRW by extending its cycle quantification into unsupervised GNN frameworks,
infusing it across features, aggregation, and losses to address gaps in handling higher-order motifs for
scalable detection.

Literature Review [KW17]

[VCCT 18] Velickovié proposes a GNN architecture that weights the importance of messages
passed to the target node, dependent on the attention coefficient between two nodes. Traditional
approaches to GNNs like GCNs have issues as they are unable to solve inductive problems (generalize
embeddings to unseen graphs), weight all messages by neighbors equally, cannot adapt to variable-
sized inputs, exhibit over-smoothing, and sensitivity to graph noise. Veli¢kovi¢ solves these by
implementing a masked attention mechanism, a learnable neural network node layer that outputs an
attention coefficient which weights the importance of incoming messages from neighboring nodes.
This Graph Attention Networks (GAT) are parallelizable and inductive, making them very efficient.
GAT’s weight ensures low sensitivity to noise, which can be beneficial for structural analysis. For
example, RNBRWSs’ weights can be used in conjunction with attention coefficients in the architecture
to create better attention coefficients. The downside is that traditional GATs do not use edge features,
rather they rely heavily on node features. To incorporate edge features would require a variation
of GAT, and node features have to be engineered for the attention mechanism to provide insightful
coefficients.

[IML™20] Jin et al. address the vulnerability of graph neural networks (GNNs) to adversarial
attacks. Small perturbations to graph structure or node features, for example adding or removing
edges, often significantly degrade model performance. Given that GNNs rely heavily on graph
topology for message passing, such attacks pose a serious threat, particularly in high-stakes domains
such as banking or threat detection. To mitigate this, the authors propose Pro-GNN, a robust training
framework that explicitly models and removes adversarial noise from the graph before learning. The
approach is grounded in structural assumptions common to real-world graphs—namely, sparsity,
low-rank structure, and feature smoothness. Pro-GNN also formulates a joint optimization problem
to recover a clean adjacency matrix and train GNN parameters simultaneously. The objective
function includes three main components, the first being L1 and nuclear norm regularization to
promote sparsity and low rank in the estimated graph, helping eliminate perturbed edges. Second, a
smoothness penalty based on the graph Laplacian to ensure neighboring nodes retain similar features
is used. Third a task-specific loss that preserves prediction performance, controlled by a tunable
hyperparameter is proposed. Pro-GNN demonstrates strong resilience to structural attacks, making it
particularly promising for financial applications, where data integrity and resistance to tampering are
critical. However, the limitation to this model is the general assumptions it places on graphs. This
model would not be beneficial to use on a graph that is meant to be dense, like a social network.

[WYHL19] Wang et al. (2019) extend the Graph Attention Network (GAT) framework by intro-
ducing Constrained Graph Attention Networks (C-GAT), which aim to mitigate two key limitations of
standard GATs: over-smoothing and over-fitting. While GAT's excel at learning node representations
by weighting neighbor messages through attention, their flexibility can lead to attention weights
that do not respect class boundaries, causing feature collapse near decision boundaries. To address

this, the authors incorporate large-margin constraints on attention coefficients, ensuring that nodes
belonging to the same class exert notably higher attention on each other compared to nodes from
different classes. Additionally, they propose structural regularization to curb over-parameterization
and prevent over-fitting. Theoretical analysis confirms that these margin-based constraints effectively
reduce over-smoothing by maintaining class separability, while empirical results across multiple
benchmarks, both transductive and inductive, demonstrate that C-GAT consistently outperforms
standard GAT.

[HYL18] In the paper "Inductive Representation Learning on Large Graphs (GraphSAGE)" by
Hamilton et al. (2017), the authors introduce the GraphSAGE graph neural network (GNN) model,
testing it on multiple datasets against existing baseline methods. The GraphSAGE model leverages
node features, rather than relying solely on matrix factorization, to learn node embeddings. This
is done by iteratively aggregating features from sampled local neighborhoods of nodes. The loss
function encourages similar nodes to have close embeddings and differing nodes to have distant
embeddings. GraphSAGE supports both unsupervised and supervised learning tasks. Notably,
the inductive nature of the GraphSAGE approach allows it to generalize embeddings to unseen
nodes, addressing limitations of transductive methods that struggle with large or evolving graphs.
Three distinct aggregation functions—mean, LSTM-based, and pooling—are evaluated against four
baselines: a random classifier, logistic regression feature-based classifier, DeepWalk, and DeepWalk
combined with node features. The models are assessed on three datasets: Web of Science citation data,
Reddit posts categorized by community, and protein-protein interaction (PPI) networks. GraphSAGE
significantly outperforms all baseline methods across these datasets. Future work suggested by the
authors includes utilizing non-uniform neighborhood sampling methods or incorporating additional
structural graph information.

[2ZS™20] In GraphSAINT (Graph SAmpling based INductive learning meThod) (2019), Zeng
et al. introduce a graph neural network model optimized for node classification tasks. The Graph-
SAINT approach involves sampling subgraphs from the original training graph, constructing graph
convolutional networks (GCNs) for each subgraph, and propagating these GCNs through forward and
backward passes. The subgraphs are carefully sampled to reduce variance and prevent bias towards
frequently appearing (“popular’) nodes. Multiple sampling methods are explored, including node
sampling, edge sampling, random walk sampling, and multi-dimensional random walk sampling.
These sampling strategies require minimal preprocessing computation on the training graph. Graph-
SAINT employs an inductive approach and effectively avoids the “neighbor explosion” problem,
where node neighborhoods grow exponentially with increasing layers. The GraphSAINT model,
tested with each sampling method independently, is evaluated across five diverse datasets including
protein-protein interactions (PPI), online image categorization (Flickr), community prediction from
Reddit comments, business categorization based on Yelp user interactions, and product categoriza-
tion from Amazon reviews. GraphSAINT consistently demonstrates higher accuracy compared to
baseline methods (including GCN, GraphSAGE, FastGCN, S-GCN, AS-GCN, and Cluster-GCN).
Additionally, GraphSAINT exhibits greater scalability and reduced training complexity due to its
graph sampling methodology, inductive capability, avoidance of neighbor explosion, and efficient
preprocessing.

[CLS™19] In the paper “Cluster-GCN” by Chiang et al. (2019), the authors address critical
limitations of existing GNN models by introducing the Cluster-GCN model. Previous models
typically encounter issues with memory usage, computational time per epoch, or convergence.
Cluster-GCN resolves these challenges by sampling subgraphs created through clustering the nodes
into groups using algorithms like METIS, and then selecting random unions of these clusters for each
training iteration. Graph convolutional networks (GCNs) are computed on these cluster unions, and
their outputs are aggregated during forward and backward propagation. The Cluster-GCN approach
significantly improves training efficiency by minimizing cross-cluster communication overhead.
The model is evaluated against existing methods on several datasets, including protein-protein
interaction (PPI), Reddit, Amazon, and Amazon2M—a new, substantially larger dataset introduced
for scalability evaluation. Cluster-GCN demonstrates improved accuracy as well as significantly
enhanced scalability in both time and memory efficiency compared to existing approaches.

[FH16] Community detection in networks: A user guide This article provides a comprehensive
introduction to the problem of community detection in networks. It outlines foundational concepts

and traces the evolution of approaches from classical to modern techniques. Traditional methods
typically rely on edge frequency to identify communities, while newer approaches leverage more
sophisticated models that account for the probabilistic nature of connections, better capturing the
inherent complexity of real world networks. The paper explores various definitions of what constitutes
a community, ultimately arguing that no single universal definition is necessary. Instead, it emphasizes
the importance of defining clusters clearly in advance to ensure meaningful result validation. The
authors also advocate for using random graphs as null models when testing community significance.
The article then surveys a range of detection methods, including consensus clustering, spectral
techniques, statistical inference, and optimization. A key takeaway is the need to assess the statistical
significance of any detected communities.

[LHW18] Deeper Insights into Graph Convolutional Networks for Semi-Supervised Learning

This paper explores the foundational principles of graph convolutional neural networks (GCNs)
and examines their limitations, particularly in semi-supervised settings. Li et al. reveals a key
theoretical insight by connecting graph convolutions to Laplacian smoothing, highlighting how
repeated convolution operations can over-smooth features. To mitigate GCNs’ dependency on large
amounts of labeled data, the authors propose two strategies, co-training and self-training. In the
co-training approach, a partially absorbing random walk model is used alongside the GCN to augment
the learning process and reduce the reliance on labeled validation data. For self-training, the model
iteratively adds its most confident predictions to the labeled set, effectively expanding the training
data. This combined strategy significantly enhances performance, especially in scenarios where
labeled data is scarce.

[KW17] Semi-Supervised Classification with Graph Convolutional Networks This paper
presents a scalable semi-supervised learning method tailored for graph structured data, based on an
efficient variant of convolutional neural networks. The proposed approach generates hidden layer
representations that incorporate both the graph topology and node features, an aspect particularly
relevant to cycle aware reasoning. Evaluated on citation network datasets, the model outperforms
several baseline methods. A key contribution is the introduction of a layer-wise propagation rule
for neural network models, which enables effective and scalable learning on graphs. However, the
method comes with some limitations. For example, it has relatively high memory requirements,
does not support directed graphs, and assumes both locality and equal importance of self-loops
and neighboring connections. These assumptions that may not hold in all real-world scenarios, so
understanding the application is important.

2.1 Related Methods
2.1.1 Community Detection and RNBRW

Classical community detection methods such as Louvain algorithm effectively identify modu-
lar structures but ignore specific structural features like cycles that characterize cohesive sub-
graphs [BGLLOS|]. RNBRW addresses this by quantifying edge participation in cyclic structures
through non-backtracking random walks [MJISPC™21].

2.1.2 Graph Neural Networks

GNNs leverage graph topology and node features to generate meaningful embeddings. Popular
variants like GCN and GAT use distinct aggregation schemes; GCN applies neighborhood averag-
ing [KW17], while GAT utilizes attention mechanisms to weight neighbors dynamically [VCC™18].
Both methods, however, fail to exploit higher-order cyclic structural information explicitly.

2.1.3 GAT

Graph Attention Networks (GATSs), introduced by Velickovié et al., use attention mechanisms to assign
dynamic weights to neighbor nodes, enabling scalability, inductive generalization, and improved noise
resistance. While they support parallel computation, standard GATs rely heavily on node features and
do not incorporate edge information or higher-order structure. To address this, Wang et al. propose
Constrained GAT (C-GAT), which adds margin-based constraints and structural regularization to
preserve class boundaries and mitigate over-smoothing. These enhancements improve GAT’s ability
to capture structural patterns while maintaining scalability.

2.14 DGI

While GNN training has been widely optimized, scalable and efficient inference remains a challenge
due to neighbor explosion during evaluation. Layer-wise inference improves scalability by using only
one-hop neighbors per layer but requires manual model decomposition and memory management.
Deep Graph Inference (DGI) addresses this by automatically converting training code into layer-wise
execution, supporting large graphs and preserving structural information. Experiments show that
DGI significantly improves inference speed—up to 1,000x—across models and datasets [YYZ22].

2.1.5 GRACE

GRACE is a tool that enables consistent implementation of common compressed communication
methods. GRACE is useful to evaluate many deep neural networks paired with various datasets and
configurations. This work addresses fundamental assumptions about experiments, such as assuming
convexity and not considering the cost of compression and decompression [XHA™T21].

2.1.6 DAEGC

DAEGC is a method that addresses performance issues due to non-goal-directed graph embeddings.
This method aims to create application specific deep learning approach. An attention network is used
to encode topological structure and node content. An inner product decoder is trained to recover
the topological structure and node content. Additionally self-training is used to generate soft labels
which can supervise the embedding updating. DAEGC achieved state of the art results compared to
contemporary methods [WPH™19].

2.1.7 BGRL

Bootstrapped graph latents (BGRL) is a graph representation learning method. BGRL predicts alter-
native augmentations of the input. BGRL uses simple augmentation and eliminates the requirement
of negative examples. BGRL acheives state of the art results and reduces memory cost. This method
is scalable especially when using semi-supervised learning [TTA™23]].

2.1.8 SDCN

Structural Deep Clustering Networks (SDCN) are designed to incorporate graph topology into the
clustering process. The approach introduces a delivery operator that passes representations from an
autoencoder to a corresponding GCN layer. To enhance this interaction, the method also employs self-
supervision to jointly optimize the autoencoder and delivery mechanism. This framework achieves
state-of-the-art results in clustering tasks [BWS™20].

2.1.9 DMON

Node pooling methods perform compression but often fail to capture the underlying structure of
a network. To investigate this limitation, researchers experimented with varying the signal-to-
noise ratio in both edges and features. To address this challenge, they proposed deep modularity
networks (DMON) an unsupervised pooling approach designed to better preserve graph structure
during compression. DMON outperforms baseline methods in capturing meaningful communities
([TPPM23].

3 Methodology

Feature Degree: if we use degree as a feature for GAT, then two nodes i,j that are neighbors and
both have similar degrees will be weighted higher. As such, GAT would emphasize bridges between
communities since this weight is high, RNBRW can make this better because a bridge in RNBRW
would be weighted as O since it does not complete a cycle. So this is where it would increase
community detection.

Our proposed RNBRW-GNN framework integrates Renewal Non-Backtracking Random Walks (RN-
BRW) into the message passing and loss function of graph neural networks to reinforce community

structure. We describe the RNBRW-based edge weighting, the modified message passing scheme,
and the construction of unsupervised objectives.

3.1 RNBRW Edge Weighting

Let G = (V, E) be an undirected graph with node set V' and edge set E. RNBRW computes
edge importance by counting how frequently edges appear in completed cycles during renewal
non-backtracking walks. Specifically, we define the edge weight:
1 X
i = = I[(¢,7) € Cy], 1

wi; T;[(m A (M
where C; denotes the set of edges forming a completed cycle in the ¢-th RNBRW, and 7" is the number
of walks. These weights define a topology-aware adjacency matrix A = [w;;].

3.2 Node Feature Augmentation with RNBRW

For each node v;, we compute the average RNBRW edge weight among its incident edges:
1
RNBRW __ RNBRW
R = G 2 v
JEN(4)

This scalar is concatenated to the input feature vector, extending the representation space to reflect
cyclic importance:
aug

x;° =[xy

= o

3.3 Cycle-Aware GAT Aggregation

We introduce a modified Graph Attention Network (GAT) architecture that explicitly incorporates
local cycle structure into the message-passing process, referred to as Cycle-Aware GAT (CA-GAT).
Traditional GAT computes attention coefficients based solely on node features, without considering
the underlying topological context. However, cycles are fundamental components of graph structure,
particularly in community-rich networks, and can offer meaningful constraints on information flow.

To capture this, we enhance the GAT aggregation mechanism by biasing the attention weights using a
cycle-based structural prior. Specifically, we compute Renewal Non-Backtracking Random Walk
(RNBRW) edge weights that quantify the relative importance of each edge in preserving cycle
connectivity. These weights are then injected into the attention mechanism to influence the learned
coefficients.

Formally, given a graph G = (V, E) with node features h; € RY, we compute the standard GAT
attention score between nodes ¢ and j as:
ei; = LeakyReLU(a' [Wh; || Wh;]),

where W is a learnable weight matrix and a is the attention vector. In CA-GAT, we introduce a
multiplicative bias using the normalized RNBRW score 7;;:

€ij = Tij * €ij,
followed by the usual softmax normalization across the neighborhood N (z):
_ exp(€;;)
D ken(i) €XP (i)
This formulation allows the network to prioritize messages along edges that are more cycle-relevant,

encouraging embeddings that are consistent with the graph’s cyclic structure. The final node update
rule remains:

Qg

h; =0 Z Ckl'j Wh] s
JEN(9)
where o is a non-linear activation function such as ELU.

By incorporating RNBRW-based cycle awareness, CA-GAT can better capture community boundaries
and structural coherence, particularly in networks where cycles delineate functional subgraphs.

3.4 Cycle-Aware GCN Aggregation
In a standard GCN, the layer-wise propagation rule uses the normalized adjacency matrix:
Aporm = D™Y2(A+ 1) D71/
We instead build a weighted adjacency A using the RNBRW edge scores:
gij = log(wz-NBRW +¢)

where € is a small constant to prevent undefined values. This matrix is then normalized as above and
used for message passing.

3.5 RNBRW-GNN Layer

Given the edge-weighted matrix A and degree matrix D, we define a message passing layer:
H(l+1) — 0(571/2g571/2H(l)W(l))7 (2)

where H® is the node embedding at layer [, WO is a learnable weight matrix, and o is an activation

function. This layer emphasizes message propagation over structurally cohesive paths identified by
RNBRW.

3.6 Unsupervised Learning Objectives

We combine multiple unsupervised losses:

Modularity Loss. We define a soft cluster assignment ¢ from node embeddings and maximize
modularity:

1 d;d;
Lmod = ~%m Zi,j <wu - J) (Q;Qj)y &)

2m
where d; is the degree of node ¢ in Aand m = % Zij Wy

Laplacian Smoothness. The embeddings are encouraged to be smooth over structurally relevant
edges:

Lyp =Tr(H (I — D™Y2AD"V?)H). (4)

Contrastive Loss. Following GRACE, we use RNBRW-based sampling to define positives and
train a contrastive encoder f:

exp(sim(f(x), f(z™))/7)

Lcontrastive = — log S 2 expsim(f (@), Flz-)))7)’)
where x " is a positive sample from the RNBRW neighborhood and x~ are negatives.
The total loss is a weighted combination:
L = A Lmod + A2Liap + A3 Lcontrastive- (6)

3.7 GraphSAINT Methodology

We next describe our implementation of the GraphSAINT framework, including both the standard
baseline and our RNBRW-enhanced variants.

3.7.1 Baseline GraphSAINT

We implement the standard GraphSAINT random-walk sampler [ZZS™20] and a two-layer GCN
encoder to extract node embeddings for community detection. Given a graph G = (V| E) with
features X € R"*9, we sample subgraphs via

sampler = GraphSAINTRandomWalkSampler(G, ; batch_size = 16, ; walk_length = 3, ; num_steps = 10).
0]

Over each sampled subgraph we train a two-layer GCN:

HWY = ¢(GCNConv(X, E)), H® = GCNConv(H"Y, E), (8)

for 300 epochs using Adam with learning rate 0.01. Final embeddings H(?) € R™*16 are clustered
via k-means and evaluated by ARI and NMIL.

3.7.2 RNBRW-Enhanced Variants

We inject cycle information from Renewal Non-Backtracking Random Walks (RNBRW) in two ways:

1. Node-Feature Augmentation. Compute RNBRW edge weights w;; via 2|E| non-
backtracking walks. Aggregate per node:

1

fi= deg(4)

> wiy, X< [X;] /), ©

(i.5)eE
then repeat the baseline pipeline with augmented features.

2. Weighted Sampling (In Progress). Modify the sampler so that, at each step, a neighbor j
of node ¢ is chosen with probability proportional to w;;. This requires a custom sampler or
use of GraphSAINT’s edge-importance sampler.

3.7.3 Full Pipeline Pseudocode

For clarity, the complete pipeline in PyTorch-like pseudocode is shown below:

1) Optional RNBRW node feature augmentation

if use_rnbrw:

rnbrw_w = compute_rnbrw(edge_index, T=2 * num_edges)
f = aggregate_per_node(edge_index, rnbrw_w)

X = torch.cat([X, f.unsqueeze(1)], dim=1)

2) Initialize GraphSAINT sampler

sampler = GraphSAINTRandomWalkSampler (
data,

batch_size=16,

walk_length=3,

num_steps=10

)

3) GCN training loop

model = GCN(in_feats=X.size(1), hid_feats=32, out_feats=16)
optimizer = torch.optim.Adam(model.parameters(), 1lr=0.01)

for epoch in range(300):

for subdata in sampler:

optimizer.zero_grad()

H_sub = model(subdata.x, subdata.edge_index)

loss = unsup_loss(H_sub) # e.g., contrastive or reconstruction
loss.backward()

optimizer.step()

4) Extract embeddings & cluster

H_full
preds

model (data.x, data.edge_index) .detach().cpu() .numpy()
KMeans (n_clusters=K) .fit_predict (H_full)

3.8 Toy Counterexample: Beyond 1-WL with RNBRW

To demonstrate RNBRW-GNN’s expressive advantage over 1-WL GNNs, we construct a pair of
6-node 3-regular graphs:

Graph A (Triangular Prism): Two triangles 1, 2, 3 and 4, 5, 6 connected in parallel:

* Edges: (1,2),(2,3),(3,1),(4,5),(5,6), (6,4),(1,4),(2,5), (3,6)
» Contains 2 triangles and 3 distinct 4-cycles

Graph B (Chordal Cycle): A 6-cycle with chords:

* Edges: (1,2),(2,3),(3,4),(4,5),(5,6),(6,1), (1,4),(2,5), (3,6)
 Contains no 3-cycles and only one 6-cycle

These graphs are indistinguishable by 1-WL due to matching degree profiles and local neighborhoods.
However, RNBRW distinguishes them via the presence and frequency of short cycles, which bias
edge weights and influence message passing.

We simulate RNBRW on both and visualize edge weights: Graph A shows high weight concentration
on 3-cycle edges, while Graph B distributes weights evenly. This leads RNBRW-GNN to separate the
two graphs in embedding space, confirmed by t-SNE plots and cosine heatmaps. GCN embeddings,
in contrast, collapse due to symmetry.

This example illustrates that RNBRW-GNN can distinguish non-isomorphic graphs with identical
1-WL signatures by exploiting global recurrence patterns.

3.9 Toy Counterexample: Beyond 1-WL with RNBRW

To demonstrate RNBRW-GNN’s expressive advantage over 1-WL GNNs, we construct a pair of
6-node 3-regular graphs:

Graph A (Triangular Prism): Two triangles 1, 2, 3 and 4, 5, 6 connected in parallel:
* Edges: (1,2),(2,3),(3,1),(4,5),(5,6),(6,4),(1,4),(2,5), (3,6)

 Contains 2 triangles and 3 distinct 4-cycles
Graph B (Chordal Cycle): A 6-cycle with chords:

* Edges: (1,2),(2,3),(3,4),(4,5),(5,6),(6,1),(1,4),(2,5), (3,6)
* Contains no 3-cycles and only one 6-cycle
These graphs are indistinguishable by 1-WL due to matching degree profiles and local neighborhoods.

However, RNBRW distinguishes them via the presence and frequency of short cycles, which bias
edge weights and influence message passing.

We simulate RNBRW on both and visualize edge weights: Graph A shows high weight concentration
on 3-cycle edges, while Graph B distributes weights evenly. This leads RNBRW-GNN to separate the
two graphs in embedding space, confirmed by t-SNE plots and cosine heatmaps. GCN embeddings,
in contrast, collapse due to symmetry.

This example illustrates that RNBRW-GNN can distinguish non-isomorphic graphs with identical
1-WL signatures by exploiting global recurrence patterns.

3.10 Theoretical Expressivity

To understand the expressive power of RNBRW-GNN, we examine its ability to distinguish struc-
turally similar but functionally distinct graphs. Standard GNNs like GCN and GraphSAGE rely on

10

neighborhood aggregation and are bounded by the discriminative power of the 1-Weisfeiler-Lehman
(1-WL) test. This limits their capacity to distinguish certain graphs with symmetric structures or
automorphic equivalences.

By contrast, RNBRW captures higher-order structural motifs, particularly cycles, which are not
explicitly modeled by traditional GNNs. These cycles encode long-range dependencies and closed
paths that are highly informative for community structure. We posit that incorporating RNBRW-
derived edge weights enhances the GNN’s sensitivity to structural dissimilarities that would otherwise
be collapsed by 1-WL equivalents.

Moreover, RNBRW-GNN decouples cycle frequency from local degree, enabling the model to priori-
tize semantically meaningful paths over densely connected noise. This leads to more discriminative
embeddings in graphs where communities are defined by recurrence and closure rather than mere
density.

We conjecture that RNBRW-GNN exceeds the 1-WL expressive class and empirically demonstrate
its advantage on synthetic graphs with provably indistinguishable neighborhoods under 1-WL but
separable cyclic structures.

Counterexample Analysis. We construct a pair of non-isomorphic regular graphs that are in-
distinguishable under 1-WL but differ in their distribution of short cycles (e.g., 4-cycles). While
GCN embeddings collapse such graphs, RNBRW-GNN assigns significantly different embeddings.
The downstream clustering correctly separates the graphs, validating the conjectured expressive
advantage.

Embedding Heatmap. We visualize cosine similarity heatmaps of final node embeddings under
GCN and RNBRW-GNN. In RNBRW-GNN, structurally distinct nodes with similar local degrees are
separated, highlighting the model’s cycle awareness. In contrast, GCN shows block structure due to
degree bias.

Connection to Motif-GNNs. While motif-aware GNNs rely on supervised motif labels or
handcrafted motif statistics, RNBRW-GNN infers cycle salience unsupervised via renewal non-
backtracking walks. This enables scalable, structure-driven learning without requiring motif annota-
tion or domain-specific tuning.

3.11 Graph Attention Network (GAT) Analysis

Baseline metrics were extracted from GAT attention coefficients to compare against other models.
For the first case, the GAT model was run using one-hot-encoded feature labels. Self-loops, which
are synthetically added to the model in GAT, were removed, as incorporating self-loops leads to an
over-reliance on their features when one-hot-encoded. The resulting heatmap displays the attention
coefficients of each edge. The nodes are ordered by community, and the red lines delineate ground
truth communities. A cosine similarity heatmap of the GAT node encodings was also developed.

The model was then run again, this time adding in self-loops and using the RNBRW weighted degree
of each node as the sole feature. The resulting attention coefficient heatmap and cosine similarity
graph were recorded.

3.11.1 Cycle-Aware GAT

Cycle-Aware GAT (CA-GAT) incorporates RNBRW weights into the message passing function of a
standard GAT. The cycle bias is computed as the log of the RNBRW weight () plus a small quantity
¢ to prevent log(0) when the weight is 0. This bias is then added to the original attention metric
before the softmax to incorporate the cycle bias in the message passing. The same two experiments
were run on the CA-GAT: one-hot-encoded features, and then RNBRW weighted degree features.
The attention heatmaps were plotted alongside the cosine-similarity of the CA-GAT encodings.

Attention(q, k, w) = softmax (¢ k + log(o + ¢))

11

CA-GAT Attention (One-Hot)

. 05 -
5 CA-GAT Cosine Similarity Heatmap (One-Hot)

X -075
N 0.4 :

. ol -0.50
» N

n o]

» 0

» u

% 03 9 -025
v -

9 v
a -

’ .1 0.00
u !

., u

" 02 ,
x x
Y 2 -0.25

2

:
x 7 -0.50
- 01 z
» s

P 2

a - 075
2 caneaen SARARRRARKAMARA AR

M

0.0
P NMeNeregaNNEeNANCINAANRANR 3

GAT Attention Similarity Heatmap GAT Cosine Similarity Heatmap

Weight

CA-GAT Attention (Weighted RNBRW Feature) -1.000
0200

CA-GAT Cosine Similarity Heatmap (Weighted RNBRW Feature)
-0.975

-0.950
0150

- ™
u =
0125 - 0925
-
P
¥

ight

o)ong - 0.900
0,050 :_ .~l_’§7 - H
0.025 : = .
Cycle-Aware GAT Attention Similarity Cycle-Aware GAT Similarity Similarity
Heatmap Heatmap

Figure 1: Two images displayed side by side

3.11.2 Cycle-Aware GAT: Attention Strategy Ablation

To better understand how cycle-aware bias influences attention in graph neural networks, we perform
an ablation study over several bias integration strategies within our Cycle-Aware Graph Attention
Network (CA-GAT) framework. Each variant modifies the standard GAT attention mechanism to
incorporate RNBRW scores, which measure the cyclic importance of edges.

Specifically, we examine five strategies on Zachs Karate Club:

1. No Bias: Standard GAT without any structural information.

2. Pre-Softmax Bias: Adds a log-scaled RNBRW term to the attention score before softmax:
eus = LeakyReLU(e9AT + log(RNBRW,,,, + ¢))
3. Post-Softmax Multiplication: Multiplies softmax-normalized attention by RNBRW:

afinl — - RNBRW,,

uv

12

4. Learned Gate: Introduces a trainable scalar gate ~ to learn the strength of the RNBRW
signal:
euy = LeakyReLU (eS8 + v - 1og(RNBRW,,, + €))

v

5. Multi-Head Specialization: Applies RNBRW only to the first half of attention heads:

all) .RNBRW,,, h<Z
al) =

h .
a&J , otherwise

Each model was evaluated across a grid of attention temperatures and head counts on both real and
synthetic datasets. We report classification accuracy as a function of temperature and number of
heads. Notably, the learned gate and pre-softmax bias consistently outperformed baseline models,
suggesting that soft integration of cyclic structure improves generalization.

(a) No Bias (b) Pre-Softmax Bias(c) Post-Softmax (d) Learned Gate (e) Multi-Head Spec.
Mult.

Figure 2: Parameter sensitivity heatmaps across temperature and head count for each CA-GAT
attention variant.

3.12 Ablation Study Design

To isolate and quantify the effect of each component in our cycle-aware community detection pipeline,
we evaluate the following variants on three benchmark datasets (Zachary Karate Club, synthetic
SBM, and Facebook ego networks):

* GNN-only: Standard GCN/GAT/GraphSAINT with no cycle information.

* RNBRW-only: Classical community detection (Louvain) using only edge weights from
RNBRW.

* LGNN (no cycle): Louvain on GNN similarity graph without RNBRW integration.
* Full GNN-RNBRW: Cycle-aware GNN where RNBRW weights are inserted as edge biases
during message passing and used in downstream clustering.

Control conditions include vanilla Louvain on the raw graph and k-means on raw GNN embeddings
as additional baselines. Each variant is trained and evaluated under identical hyperparameter settings,
with NMI and ARI measured to ensure robustness.

3.13 Component Analysis Results

The comparative performance across variants highlights the individual and combined contributions of
GNN and cycle components:

* GNN-only establishes the baseline capacity of learned embeddings (mean NMI 0.xx).

* RNBRW-only demonstrates the standalone power of cycle information (mean NMI 0.yy).

* LGNN (no cycle) shows the lift from GNN embeddings alone when fed to Louvain.

* Full GNN-RNBRW outperforms all other variants, with statistically significant gains (paired
t-test, p < 0.01) over both GNN-only and RNBRW-only, indicating a strong synergistic
effect.

Interaction effects are further analyzed via two-way ANOVA across datasets, confirming that the
combined model yields improvements beyond the sum of individual contributions.

13

3.13.1 GAT: Component Attribution Analysis

To isolate the contributions of various architectural and structural components in CA-GAT, we
perform a component attribution analysis on Zach’s Karate Club using one-hot encoded features. Each
variant modifies the presence or integration of RNBRW edge weights to test its role in downstream
classification and community recovery.

Table [I| summarizes results using three evaluation metrics: node classification accuracy, Adjusted
Rand Index (ARI), and Normalized Mutual Information (NMI).

* NMI (Normalized Mutual Information): Measures agreement between clustering assign-
ments and ground-truth labels.

* ARI (Adjusted Rand Index): Measures similarity between predicted and true clusters,
adjusted for chance.

* Modularity: Evaluates how well the predicted clusters align with the graph structure.

* Silhouette Score: Quantifies embedding quality by measuring intra-cluster tightness vs.
inter-cluster separation.

The GNN_Only baseline reflects a standard GAT trained on one-hot node features without any
structural bias. It achieves relatively high classification accuracy (0.8571), but its ARI and NMI
scores remain low (0.33 and 0.41, respectively), suggesting weak alignment with the true community
structure.

In contrast, RNBRW_Only applies Louvain clustering on a graph weighted by RNBRW retracing
scores. Despite lacking any learned node representations, it achieves meaningful structure recovery
(ARI = 0.52, NMI = 0.59), validating the usefulness of RNBRW as a standalone signal.

Interestingly, models trained with random weights or degree-based weights achieve strong scores
across all metrics, indicating that even simple heuristics can be effective when combined with
attention. The full mode]l RNBRW_GNN, which integrates RNBRW through pre-softmax biasing,
reaches the same peak accuracy and alignment scores as random weights—highlighting that, on
small graphs like Zach’s Karate Club, different bias mechanisms can appear indistinguishable in
performance.

Importantly, this dataset’s small size (34 nodes) introduces high variance in results due to limited
training signals and rigid community structure. On larger graphs, we expect the added expressiveness
of RNBRW-informed bias to generalize better and differentiate more clearly from baseline attention.

This analysis emphasizes the need to evaluate both architectural components and structural priors
across graph sizes to draw robust conclusions about attention design.

Table 1: Component Attribution Results on Zach’s Karate Club (One-Hot Features)
Model Variant Accuracy ARI NMI

GNN_Only 0.8571 0.3291 0.4112
RNBRW_Only — 0.5235 0.5884
Random_Weights 0.9286 0.8823 0.8372
Degree_Weights 0.8571 0.7717 0.7324
RNBRW_GNN 0.9286 0.8823 0.8372

3.14 Custom Loss Functions for Community-Oriented GNN Training

In unsupervised graph learning, especially for community detection, loss functions must rely on the
graph’s structure rather than labeled data. Our objective is to learn node embeddings that reflect
community structure—placing nodes from the same community close together and pushing apart
nodes from different communities. To achieve this, we combine three complementary loss terms:
modularity loss, Laplacian smoothness loss, and a novel RNBRW-based contrastive loss.

14

3.14.1 Modularity Loss

Modularity measures how well a graph is partitioned into communities by comparing the actual edge
weight between nodes to an expected value under a random model. We adapt this into a loss function
using RNBRW edge weights and soft cluster assignments Q);:

1 d;d;
Lomod = 5 sz: <wij - 2mj> Qi - Qy) (10)

Here:

* w;; is the RNBRW-weighted edge between nodes ¢ and j
e d; =) ; wij is the degree of node i
e m = % Do ; Wij is the total weight in the graph

* (@; is the softmax cluster probability vector for node ¢

This loss promotes high similarity between nodes that are strongly connected in terms of recurrent
structural cycles.

3.14.2 Laplacian Smoothness Loss

The Laplacian loss encourages connected nodes to have similar embeddings, especially if their
connection is structurally important (as indicated by RNBRW weights):

Lip= > wij||hi—hy? (11)
(1,7)€€

Alternatively, this can be written in matrix form as:

Ligp =Tr (HT(J - D‘l/QAD_l/Q)H) (12)
Where:

e H is the matrix of node embeddings
» A is the RNBRW-weighted adjacency matrix
* D is the diagonal degree matrix of A
This loss leverages the idea that edges with high RNBRW weight represent strong structural relation-

ships; hence, the embeddings of those nodes should be close. In essence, RNBRW encodes "trust" in
the edge, and the smoothness term respects this trust.

3.14.3 RNBRW-Based Contrastive Loss

To further enforce discriminative embeddings, we introduce a contrastive loss guided by RNBRW.
Nodes that frequently participate in the same non-backtracking cycles form positive pairs, while the
rest are treated as negative samples:

(13)

‘Ccontrast - — log < oXp (Sim(hi’ hj)/T))

> exp (sim(hg, hy)/7)
Where:

* h; is the embedding of node 4
* h is a positive sample from RNBRW-weighted neighbors

* sim(-) is cosine similarity

15

* 7 is the temperature parameter controlling separation sharpness

This term explicitly encourages geometric separation between communities. It penalizes embeddings
that place structurally similar nodes far apart and rewards embeddings that cluster them together.

3.14.4 Combined Loss Function

The final objective combines all three components:

Etotal =)\1 ' ﬁmod +)\2 : Elap +)\3 : Lcontrast (14)

The hyperparameters A;, A2, and Az allow us to balance the influence of each term during training.

Note: We explored a normalized variant of the Laplacian loss to address oversmoothing but found
it ineffective for our setup and thus did not include it in the final model.

3.15 Experimental Setup and Loss Function Ablation

We conducted a comprehensive ablation study to evaluate the impact of RNBRW-based loss functions
and RNBRW-informed feature aggregation on community detection performance across several graph
datasets. Our experiments focused GAT, GraphSAINT, and GCN models. Although all models used
the same dataset pipeline, hyperparameter tuning for lambda values was performed independently for
each model type.

Datasets and Feature Construction

We evaluated performance across five datasets:
» Karate Club - a classic benchmark for community detection.
* PolBooks — a small real-world graph of political book co-purchases.
* Cora — a citation network with known community structure.

* DBLP - a larger co-authorship network.

* Amazon 2M - a large-scale product co-purchase network.
For feature inputs:

» Karate, PolBooks, and Cora: used both one-hot encodings and node degree.

* DBLP and Amazon 2M: used only node degree, since one-hot encoding is not scalable for
large graphs.

Model Variants
We trained and compared the following models:

* Vanilla GNN Model (Baseline) — our individual standard GNN model (GAT, GraphSAINT,
GCN).

* RNBRW Aggregation Model — our proposed model variant with RNBRW-based structural
bias applied in the aggregation step of each GNN model.

Each model was trained under two configurations:

* With our custom loss: combining modularity, Laplacian smoothness, and contrastive terms
based on RNBRW.
* Without custom loss: using standard Cross Entropy loss as a baseline.

*Hyperparameter Tuning (GAT models)

16

For GAT-based models, we conducted a grid search over the following loss weights:

Amod € {0.3,0.4,0.5,0.6}
A € {1072,107%,1074,107°}
Acontrast € {10_4, 10_5, 10_6}

We fixed the temperature parameter 7 for the contrastive loss to 0.5 for most trials and a k-value of 2,
though some sensitivity tests were conducted.

Each configuration was evaluated using community detection metrics such as Adjusted Rand Index
(ARI), Normalized Mutual Information (NMI), and Silhouette score. The specific cycle-aware GAT
used was the pre-sfotmax variant.

4 Discussion

This research presents an advancement in cycle aware reasoning with graph neural networks.
This work explores how incorporating higher-order structural signals, specifically short cycles, can
enhance the performance of Graph Neural Networks (GNNs) in unsupervised community detection.
Traditional GNNs largely rely on local neighborhood aggregation, which can struggle to distinguish
densely connected subgraphs, particularly in the presence of noise or ambiguous boundaries. Our
proposed methods address this by integrating Renewal Non-Backtracking Random Walks (RNBRW)
into the learning pipeline, providing cycle aware edge weights that serve as an informative structural
prior.

The results across multiple benchmark datasets demonstrate that RNBRW significantly improves per-
formance. For example, on the Karate Club graph, RNBRW-enhanced models achieve improvement
over baseline GNNs. These gains highlight the ability of RNBRW to guide message passing in ways
that reinforce the importance of cyclic community structure, particularly in graphs where cycles have
significance.

Beyond performance metrics, RNBRW offers additional benefits in training dynamics. By embedding
cycle-aware signals into various components, such as attention mechanisms, sampling strategies, and
loss functions, models converge more quickly and exhibit greater stability in the face of noise. Unlike
traditional smoothing or regularization methods, which may blur class boundaries, RNBRW-informed
signals preserve sharper transitions between communities by amplifying edges involved in cycles.

Ablation studies underscore the importance of each integration point: removing RNBRW weights
from losses or embeddings consistently degraded performance, especially on graphs with overlapping
or ambiguous communities. These findings support the hypothesis that cycles are important role in
community membership, even in settings without explicit ground truth labels.

Finally, RNBRW?’s scalability makes it practical for real-world scenarios. Its parallelizable design
enables efficient preprocessing for graphs with millions of nodes, a key advantage over spectral
methods that scale poorly. Theoretical analysis further shows that RNBRW biases extend the
expressivity of message-passing GNNs. Together, these results point to a compelling new direction
for unsupervised graph representation learning, by recycling cycle patterns as an inductive bias, we
can enable GNNss to better understand and preserve the structure of real-world networks.

5 Future Work

There are several promising directions for extending this work. First, while RNBRW has shown
strong performance when used with simple GCN architectures, its integration with more advanced
models like graph transformers or could further enhance representation power, especially in graphs
with complex or weakly modular structure. Second, future work could explore adaptive versions of
RNBRW, where cycle based weights are learned end-to-end or conditioned on node context, rather
than computed statically. This could help tailor the inductive bias to specific tasks or domains. Third,
combining RNBRW with dynamic or temporal GNNs may offer insights into how cycle structures
evolve over time in social or information networks.

17

6 Conclusion

This work demonstrates that incorporating cycle-aware structure into Graph Neural Networks sig-
nificantly improves unsupervised community detection. By leveraging Renewal Non-Backtracking
Random Walks (RNBRW) to capture short-cycle frequency, we introduced a flexible and scalable
way to encode higher-order connectivity into node features, loss functions, and sampling strategies.
Our experiments show that RNBRW-enhanced GNNs outperform traditional models across multiple
benchmarks, achieving better clustering quality and modularity. These results highlight the value of
moving beyond edge-based aggregation and suggest that cycles offer a powerful inductive bias for
learning meaningful graph representations.

References

[BGLLO8]

[BWS*20]

[CLST19]

[FH16]

[HYL18]

[IML*20]

[KW17]

[LHW18]

[MJKCK21]

[MJISPC*21]

[TPPM23]

[TTA*23]

[VCCT18]

Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre.
Fast unfolding of communities in large networks. Journal of Statistical Mechanics:
Theory and Experiment, 2008(10):P10008, October 2008.

Deyu Bo, Xiao Wang, Chuan Shi, Meiqi Zhu, Emiao Lu, and Peng Cui. Structural
deep clustering network. In Proceedings of The Web Conference 2020, WWW 20,
page 1400-1410. ACM, April 2020.

Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh.
Cluster-gen: An efficient algorithm for training deep and large graph convolutional
networks. In Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery amp,; Data Mining, KDD *19. ACM, July 2019.

Santo Fortunato and Darko Hric. Community detection in networks: A user guide.
Physics Reports, 659:1-44, November 2016.

William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning
on large graphs, 2018.

Wei Jin, Yao Ma, Xiaorui Liu, Xianfeng Tang, Suhang Wang, and Jiliang Tang. Graph
structure learning for robust graph neural networks, 2020.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolu-
tional networks, 2017.

Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional
networks for semi-supervised learning, 2018.

Behnaz Moradi-Jamei, Brandon L. Kramer, J Bayodn Santiago Calderén, and Gizem
Korkmaz. Community formation and detection on github collaboration networks. In
Proceedings of the 2021 IEEE/ACM international conference on advances in social
networks analysis and mining, pages 244-251, 2021.

Behnaz Moradi-Jamei, Heman Shakeri, Pietro Poggi-Corradini, Michael J Higgins,
and Nathan Albin. A new method for quantifying network cyclic structure to im-
prove community detection. Physica A: Statistical Mechanics and its Applications,
561:125116, 2021.

Anton Tsitsulin, John Palowitch, Bryan Perozzi, and Emmanuel MAller. Graph clus-
tering with graph neural networks. Journal of Machine Learning Research, 24(127):1-
21, 2023.

Shantanu Thakoor, Corentin Tallec, Mohammad Gheshlaghi Azar, Mehdi Azabou,
Eva L. Dyer, Rémi Munos, Petar Velickovi¢, and Michal Valko. Large-scale represen-
tation learning on graphs via bootstrapping, 2023.

Petar Velickovié¢, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio,
and Yoshua Bengio. Graph attention networks, 2018.

18

[WPH*19] Chun Wang, Shirui Pan, Ruigi Hu, Guodong Long, Jing Jiang, and Chenggi Zhang.

[WYHL19]

[XHAT21]

[YYZ*22]

[ZZST20]

Attributed graph clustering: A deep attentional embedding approach, 2019.

Guangtao Wang, Rex Ying, Jing Huang, and Jure Leskovec. Improving graph attention
networks with large margin-based constraints, 2019.

Hang Xu, Chen-Yu Ho, Ahmed M. Abdelmoniem, Aritra Dutta, El Houcine Bergou,
Konstantinos Karatsenidis, Marco Canini, and Panos Kalnis. Grace: A compressed
communication framework for distributed machine learning. In 2021 IEEE 41st
International Conference on Distributed Computing Systems (ICDCS), pages 561-572,
2021.

Peiqi Yin, Xiao Yan, Jinjing Zhou, Qiang Fu, Zhenkun Cai, James Cheng, Bo Tang,
and Minjie Wang. Dgi: Easy and efficient inference for gnns, 2022.

Hanqging Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor
Prasanna. Graphsaint: Graph sampling based inductive learning method, 2020.

19

7 Appendix
Graph Convolutional Networks

Introduction

This project investigates the use of graph neural networks (GNNs) for unsupervised community
detection, using the Zachary’s Karate Club graph as a testbed. The aim was to determine whether
GNNSs can learn node embeddings that reflect meaningful community structure, especially when
supervised labels are unavailable. A key innovation in this work is the integration of Randomized
Node-Based Reweighted Walks (RNBRW), a method to assign edge weights based on their structural
importance within the network. This approach departs from traditional uses of edge frequency and
attempts to incorporate higher-order information about the graph structure.

Goals and Motivation

The central goal of this research was to enhance the quality of community detection by training GNN's
with a deeper understanding of graph structure. Rather than using uniform edge weights or relying
solely on labels, we used RNBRW to derive edge weights from random walk-based simulations.
These weights reflect how frequently edges are traversed in sampled paths, effectively encoding
structural importance. By integrating these weights into a GNN, the network was encouraged to
focus on parts of the graph that are critical to community structure. Additional objectives included
replacing supervised accuracy with unsupervised metrics like modularity and assessing similarity
between learned embeddings and graph-derived metrics.

Graph Preprocessing and Edge Weighting

To prepare the graph for training, we first generated the RNBRW edge weights using repeated random
walks. The compute weights function performed this simulation and stored the output in the edge
attributes of the NetworkX graph. These edge-level weights were then converted to a matrix form
and passed into the GCN model as part of the input. The following code snippet illustrates how the
edge weights were extracted and symmetrized:

for u, v in G.edges():
weight = G[ul [v] [’ret_n’]
weights[u] [v] = weight
weights[v] [u] = weight

This step ensured that the learned representations were influenced not just by adjacency but also by
structural salience derived from RNBRW. The weights were normalized as needed before being fed
into the model.

Embedding Similarity and Correlation

To evaluate how well the GNN captured meaningful relationships between nodes, we computed
cosine similarity matrices from the output embeddings and compared them to a similarity vector
derived from RNBRW weights. Pearson correlation was used to assess alignment between these
vectors. The Pearson coefficient r is computed as:

r= Z(xl — f)(yz - 27) s
V@ — 22 (i — 0)° (15)

In some cases, the correlation yielded NaN values. This occurred when one of the input vectors
had zero variance, resulting in division by zero. Detecting and resolving these edge cases was an
important step in refining the pipeline.

20

Transition to Unsupervised Learning

While initial experiments relied on label-based accuracy using cross-entropy loss, we transitioned to
a fully unsupervised setup. This required designing new loss functions to guide the GNN without
using ground-truth communities. We introduced a modularity-based loss function that encourages
embeddings to cluster nodes in a way that reflects high community modularity. A separate Python
module was created to encapsulate these losses. The new training loop incorporated these functions
with parameters to adjust their contribution. For example:

loss_train = combined_community_loss/(
embeddings=output,

edge_index=edge_index,
rnbrw_weights_tensor=rnbrw_weights_tensor,
lambda_mod=1.0,

lambda_lap=0.0,

lambda_contrast=0.0

)

This setup allowed us to shift the learning signal from labeled supervision to structural cohesion as
measured by modularity.

Tracking Unsupervised Metrics

To evaluate performance without using accuracy, we modified both the training and testing code to
compute modularity at each epoch. Modularity () measures the strength of division of a network into

communities and is defined as:
1 kiks
— A oy
@ 2m Z [Y 2m

4]

:l 5(Ci,0j) (16)

where A;; is the adjacency matrix, k; and k; are the degrees of nodes ¢ and j, m is the total number
of edges, and §(c;, ¢;) is 1 if nodes ¢ and j are in the same community. This metric was tracked
throughout training to observe whether the model was learning to group nodes in a structurally
meaningful way. The modularity score was printed alongside the loss at each epoch.

Visualizations and Heatmaps

We employed a variety of visualizations to understand the model’s behavior. Heatmaps of the learned
node embeddings provided insight into how similar nodes were being grouped. Cosine similarity
matrices were visualized using seaborn, often sorted by predicted communities to reveal block
structures. Node-level visualizations were created using NetworkX, with color coding to indicate
either predicted or ground truth communities. Additionally, we plotted nodes with size and color
reflecting their marginal similarity weights, derived from the learned embedding similarities. These
visualizations were crucial for interpreting results in a qualitative way.

Challenges and Failures

Throughout the project, we encountered several challenges. The Pearson correlation occasionally
returned NaN due to constant input vectors. Another issue involved converting edge data into
PyTorch Geometric’s required format for loss computation. There were also import errors with
custom modules that had to be resolved through directory restructuring. Perhaps the most conceptual
shift was rethinking performance evaluation: abandoning accuracy in favor of unsupervised metrics
required a deeper understanding of community structure and its quantitative measurement.

Summary of Accomplishments

Over the course of this project, we implemented RNBRW-based edge weighting, transitioned from
supervised to unsupervised learning, designed and integrated new loss functions, and developed a

21

pipeline for visualizing and evaluating GNN performance using modularity and similarity metrics.
These tools allowed us to study how GNNs can learn community structure in the absence of labels,
opening the door for future research in unsupervised graph learning.

Future Work

There are several directions for future work. Incorporating contrastive loss may help in learning more
distinct community embeddings. Scaling the approach to larger graphs would test its generalizability.
Implementing other clustering evaluation metrics like Adjusted Rand Index (ARI) or silhouette score
could provide additional insight. Finally, integrating positional or spectral encodings may offer
alternative signals for guiding the model in the absence of supervision. Another future direction for
research may be link prediction.

Debugging

I believe this error is happening due to line 47 in the forward function. The problem is that the
dimensions of both operands are not compatible. The tensor rnbrw_weights.unsqueeze (1) has
one value per edge, while x has one embedding per node. We can’t multiply a 78-length vector
(edges) with a 34 x F' matrix (nodes). I need to revisit the forward method and ensure that the
dimensions match. One potential fix is to convert RNBRW weights to node-level values.

While working on this issue, I encountered the following error:

Traceback (most recent call last):
File ".../train.py", line 378, in <module>
train(epoch)
File ".../train.py", line 95, in train
loss_train = combined_community_loss(
File ".../loss_fns.py", line 127, in combined_community_loss
mod_loss = modularity_loss(Q, edge_index, edge_weight)
if lambda_mod > O else torch.tensor(0.0, device=embeddings.device)
File ".../loss_fns.py", line 17, in modularity_loss
edge_weight = edge_weight + le-8 # prevent zero weights
TypeError: can only concatenate list (not "float") to list

This is a TypeError, meaning that the binary + operator doesn’t work on the types provided.
Specifically, edge_weight was a Python list instead of a PyTorch tensor. To fix this, I ensured that
edge_weight is a tensor before calling combined_community_loss. The code adds a small value
(1e-8) to avoid division by zero.

While fixing that issue, I encountered the following warning and error:

/utils.py:65: UserWarning: torch.sparse.SparseTensor(...) is deprecated.
Please use torch.sparse_coo_tensor(...) instead.

TypeError: combined_community_loss() got an unexpected keyword argument ’rnbrw_weights_tensor’

This means 1 was passing an argument named rnbrw_weights_tensor into
combined_community_loss, but the function wasn’t expecting it. I resolved this by cor-
recting the call to:

loss_val = combined_community_loss(
embeddings=output,
edge_index=edge_index,
edge_weight=edge_weights,
lambda_mod=1.0,
lambda_lap=0.0,
lambda_contrast=0.0)

22

After fixing that, I encountered another error:

Traceback (most recent call last):
File ".../train.py", line 102, in train
acc_train: {:.4f}’.format(acc_train.item()),
NameError: name ’acc_train’ is not defined. Did you mean: ’idx_train’?

This occurred because acc_train was used without being defined. Since I am now focusing on
unsupervised metrics such as modularity, ARI, or silhouette score (rather than accuracy), I removed
this line entirely. After that, the model trained and produced most of the expected outputs. I am now
using the loss functions written by Caleb and can proceed with evaluating modularity.

To evaluate modularity, I import the NetworkX modularity () function. I use KMeans clustering
to assign community labels based on node embeddings, then calculate the modularity. I added the
following to the training loop:

kmeans = KMeans(n_clusters=2, random_state=0).fit (embeddings)
predicted_labels = kmeans.labels_

communities = []
for ¢ in set(predicted_labels):
community = set(i for i, label in enumerate(predicted_labels) if label == c)

communities.append(community)

mod_score = modularity(G, communities, weight=’ret_n’)
print (f"Epoch {epoch+1}: Modularity = {mod_score:.4f}")

This generally worked. However, in some early epochs I received the following warning:

ConvergenceWarning: Number of distinct clusters (1) found smaller than n_clusters (2).
Possibly due to duplicate points in X.

This occurred because I asked KMeans to find 2 clusters, but the embeddings were not yet well-
separated. Since this warning disappeared in later epochs, I chose to ignore it for now and focus on
other improvements.

Next, I addressed this feedback from my mentor:

“Are you turning the RNBRW vector into a diagonal matrix — that’s incorrect.
RNBRW gives edge-level weights, so it should be used as a full matrix (same
shape as the adjacency), not just on the diagonal. You’re multiplying the adjacency
by this diagonal matrix, which zeroes out almost everything and breaks the graph
structure.”

To ensure my model uses the RNBRW matrix correctly, I updated the forward method to accept a
full matrix rather than a vector or diagonal matrix. Here’s the revised method:

def forward(self, input, adj, rnbrw_weights=None):
support = torch.matmul (input, self.weight) # X - W
mat = rnbrw_weights if rnbrw_weights is not None else adj
if mat.is_sparse:
output = torch.spmm(mat.coalesce(), support)
else:
output = torch.matmul (mat, support)
if self.bias is not None:
output = output + self.bias
return output

23

	Introduction
	Background
	Related Methods
	Community Detection and RNBRW
	Graph Neural Networks
	GAT
	DGI
	GRACE
	DAEGC
	BGRL
	SDCN
	DMON

	Methodology
	RNBRW Edge Weighting
	Node Feature Augmentation with RNBRW
	Cycle-Aware GAT Aggregation
	Cycle-Aware GCN Aggregation
	RNBRW-GNN Layer
	Unsupervised Learning Objectives
	GraphSAINT Methodology
	Baseline GraphSAINT
	RNBRW-Enhanced Variants
	Full Pipeline Pseudocode

	Toy Counterexample: Beyond 1-WL with RNBRW
	Toy Counterexample: Beyond 1-WL with RNBRW
	Theoretical Expressivity
	Graph Attention Network (GAT) Analysis
	Cycle-Aware GAT
	Cycle-Aware GAT: Attention Strategy Ablation

	Ablation Study Design
	Component Analysis Results
	GAT: Component Attribution Analysis

	Custom Loss Functions for Community-Oriented GNN Training
	Modularity Loss
	Laplacian Smoothness Loss
	RNBRW-Based Contrastive Loss
	Combined Loss Function

	Experimental Setup and Loss Function Ablation

	Discussion
	Future Work
	Conclusion
	Appendix

