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2 CONTENTS

1. Dehn Twists about Bounding Pairs

1.

• Tγ1 : α1 7→ α1

α2 7→ α2

α3 7→ α3

β1 7→ β1α1

β2 7→ β2
β3 7→ β3

• Tγ2 : α1 7→ α−1
1 [α3, β3]

−1α1[α3, β3]α1

α2 7→ α2

α3 7→ α−1
1 [α3, β3]

−1α3[α3, β3]α1

β1 7→ β1[α3, β3]α1

β2 7→ β2
β3 7→ α−1

1 [α3, β3]
−1β3[α3, β3]α1

• T−1
γ2 : α1 7→ [α3, β3]α1[α3, β3]

−1

α2 7→ α2

α3 7→ [α3, β3]α1α3α
−1
1 [α3, β3]

−1

β1 7→ β1α
−1
1 [α3, β3]

−1

β2 7→ β2
β3 7→ [α3, β3]α1β3α

−1
1 [α3, β3]

−1

• Tγ1◦T−1
γ2 : α1 7→ [α3, β3]α1[α3, β3]

−1

α2 7→ α2

α3 7→ [α3, β3]α1α3α
−1
1 [α3, β3]

−1

β1 7→ β1[α3, β3]
−1

β2 7→ β2
β3 7→ [α3, β3]α1β3α

−1
1 [α3, β3]

−1

1.1. Fixed Point Equations for
(
Tγ1 ◦ T−1

γ2

)∗
.

1.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

• OnR(Σ, G) : A1 7→ [A3, B3]A1[A3, B3]
−1

A2 7→ A2

A3 7→ [A3, B3]A1A3A
−1
1 [A3, B3]

−1

B1 7→ B1[A3, B3]
−1

B2 7→ B2

B3 7→ [A3, B3]A1B3A
−1
1 [A3, B3]

−1

• OnR(Σ, G)/G : T−1A1T 7→ [A3, B3]A1[A3, B3]
−1

T−1A2T 7→ A2

T−1A3T 7→ [A3, B3]A1A3A
−1
1 [A3, B3]

−1

T−1B1T 7→ B1[A3, B3]
−1

T−1B2T 7→ B2

T−1B3T 7→ [A3, B3]A1B3A
−1
1 [A3, B3]

−1

1.2. Checking Relation.
1.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

• Tγ1 : [
α1, β1α1

][
α2, β2

][
α3, β3

]
α1β1α1α

−1
1 α−1

1 β−1
1

[
α2, β2

][
α3, β3

]
α1β1α

−1
1 β−1

1

[
α2, β2

][
α3, β3

][
α1, β1

][
α2, β2

][
α3, β3

]
1
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• Tγ2 : [
α−1
1 [α3, β3]

−1α1[α3, β3]α1, β1[α3, β3]α1

][
α2, β2

]
α−1
1 [α3, β3]

−1
[
α3, β3

]
[α3, β3]α1

α−1
1 [α3, β3]

−1α1[α3, β3]α1β1[α3, β3]α1α
−1
1 [α3, β3]

−1α−1
1 [α3, β3]α1α

−1
1 [α3, β3]

−1β−1
1

[
α2, β2

]
α−1
1 [α3, β3]α1

α−1
1 [α3, β3]

−1α1[α3, β3]α1β1α
−1
1 β−1

1

[
α2, β2

][
α3, β3

]
[α3, β3]

−1α−1
1 [α3, β3]α1

α−1
1 [α3, β3]

−1α1[α3, β3]
[
α1, β1

][
α2, β2

][
α3, β3

]
[α3, β3]

−1α−1
1 [α3, β3]α1

α−1
1 [α3, β3]

−1α1[α3, β3][α3, β3]
−1α−1

1 [α3, β3]α1

1

• T−1
γ2 : [

[α3, β3]α1[α3, β3]
−1, β1α

−1
1 [α3, β3]

−1
][
α2, β2

]
[α3, β3]α1

[
α3, β3

]
α−1
1 [α3, β3]

−1

[α3, β3]α1[α3, β3]
−1β1α

−1
1 [α3, β3]

−1[α3, β3]α
−1
1 [α3, β3]

−1[α3, β3]α1β
−1
1

[
α2, β2

][
α3, β3

]
α1[α3, β3]α

−1
1 [α3, β3]

−1

[α3, β3]α1[α3, β3]
−1α−1

1 α1β1α
−1
1 β−1

1

[
α2, β2

][
α3, β3

]
α1[α3, β3]α

−1
1 [α3, β3]

−1

[α3, β3]α1[α3, β3]
−1α−1

1 α1β1α
−1
1 β−1

1

[
α2, β2

][
α3, β3

]
α1[α3, β3]α

−1
1 [α3, β3]

−1

[α3, β3]α1[α3, β3]
−1α−1

1

[
α1, β1

][
α2, β2

][
α3, β3

]
α1[α3, β3]α

−1
1 [α3, β3]

−1

[α3, β3]α1[α3, β3]
−1α−1

1 α1[α3, β3]α
−1
1 [α3, β3]

−1

1

• Tγ1 ◦ T−1
γ2 : [

[α3, β3]α1[α3, β3]
−1, β1[α3, β3]

−1
][
α2, β2

]
[α3, β3]α1

[
α3, β3

]
α−1
1 [α3, β3]

−1

[α3, β3]α1[α3, β3]
−1β1[α3, β3]

−1[α3, β3]α
−1
1 [α3, β3]

−1[α3, β3]β
−1
1

[
α2, β2

][
α3, β3

]
α1[α3, β3]α

−1
1 [α3, β3]

−1

[α3, β3]α1[α3, β3]
−1α−1

1 α1β1α
−1
1 β−1

1

[
α2, β2

][
α3, β3

]
α1[α3, β3]α

−1
1 [α3, β3]

−1

[α3, β3]α1[α3, β3]
−1α−1

1 α1β1α
−1
1 β−1

1

[
α2, β2

][
α3, β3

]
α1[α3, β3]α

−1
1 [α3, β3]

−1

[α3, β3]α1[α3, β3]
−1α−1

1

[
α1, β1

][
α2, β2

][
α3, β3

]
α1[α3, β3]α

−1
1 [α3, β3]

−1

[α3, β3]α1[α3, β3]
−1α−1

1 α1[α3, β3]α
−1
1 [α3, β3]

−1

1

1.3. Computing Fix(Φ∗).
1.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

• A1 :

A1 = [A3, B3]A1[A3, B3]
−1

A1 = A1

• B1 :

B1 = B1[A3, B3]
−1

I = [A3, B3]
−1

I = [A3, B3]
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• A3 :

A3 = [A3, B3]A1A3A
−1
1 [A3, B3]

−1

A3 = A1A3A
−1
1

A1A3 = A3A1[
A1, A3

]
= I

• B3 :

B3 = [A3, B3]A1B3A
−1
1 [A3, B3]

−1

B3 = A1B3A
−1
1

A1B3 = B3A1[
A1, B3

]
= I

Therefore, with the relations [
A3, B3

]
= I[

A1, A3

]
= I[

A1, B3

]
= I

our fixed point set for the map Φ∗ =
(
Tγ1 ◦ T−1

γ2

)∗
is defined as follows

Fix(Φ∗) =

{
(A1, B1, A2, B2, A3, B3) ∈ SU(2)6 :

3∏
i=1

[
Ai, Bi

]
= I,

[
A1, A3

]
=

[
A1, B3

]
=

[
A3, B3

]
= I

}
Now let us proceed with the proof that this set is connected.

Proposition 1. Fix(Φ∗) is connected

Proof. With

Fix(Φ∗) =

{
(A1, B1, A2, B2, A3, B3) ∈ SU(2)6 :

3∏
i=1

[
Ai, Bi

]
= I,

[
A1, A3

]
=

[
A1, B3

]
=

[
A3, B3

]
= I

}
we begin by noting that since [A3, B3] = I, then our product of the commutator relation simplifies
to [

A1, B1

]
=

[
A2, B2

]−1

thus we may express Fix(Φ∗) as follows

Fix(Φ∗) =
{
(A1, B1, A2, B2, A3, B3) ∈ SU(2)6 :

[
A1, B1

]
=

[
A2, B2

]−1
,
[
A1, A3

]
=

[
A1, B3

]
=

[
A3, B3

]
= I

}
Now, define

B :=
{
(A1, B1, A3, B3) ∈ SU(2)4 :

[
A1, A3

]
=

[
A1, B3

]
=

[
A3, B3

]
= I

}
and consider the map

π : Fix(Φ∗) −→ B
given by (

A1, B1, A2, B2, A3, B3

)
7−→

(
A1, B1, A3, B3

)
We claim that our map π is continuous and surjective. Continuity follows directly from the obser-
vation that π is a restriction of the projection map

p : SU(2)6 −→ SU(2)4



CONTENTS 5

and we know projections in the product topology are continuous. Thus it is left to show that π is
a surjection. For this let us take

(
A1, B1, A3, B3

)
∈ B. By the definition of B, we have[

A1, A3

]
= I

[
A1, B3] = I

[
A3, B3

]
= I

Thus our goal is to find an A2, B2 ∈ SU(2) such that the 6-tuple (A1, B1, A2, B2, A3, B3) lies in
Fix(Φ∗). That is [

A1, B1

]
=

[
A2, B2

]−1

Define

A2 := A−1
1 and B2 := B−1

1 ,

note that since SU(2) is a group, then A2, B2 ∈ SU(2). Now, observe that[
A1, B1

]
= A1B1A

−1
1 B−1

1 = A−1
2 B−1

2 A2B2 =
[
A2, B2

]−1

Hence along with the assumed commutation relations in B, it follows that(
A1, B1, A2, B2, A3, B3

)
∈ Fix(Φ∗)

and thus

π
(
A1, B1, A2, B2, A3, B3

)
=

(
A1, B1, A3, B3

)
so π is surjective. Now that we have established that π is a continuous surjection, let us consider
the fibers of this map. Given a point

(
A1, B1, A3, B3

)
∈ B, the fiber over this point is defined as

π−1
(
A1, B1, A3, B3

)
=

{
(A1, B1, A2, B2, A3, B3) ∈ Fix(Φ∗)

}
Note that since in Fix(Φ∗) the only relation involving

(
A2, B2

)
is the product of the commutators,

which we can express as [
A2, B2

]
=

[
A1, B1

]−1

we may fix
(
A1, B1, A3, B3

)
∈ B and define the map

ψ : π−1
(
A1, B1, A3, B3

)
−→

{
(A2, B2) ∈ SU(2)2 : [A2, B2] = [A1, B1]

−1
}

given by (
A1, B1, A2, B2, A3, B3

)
7−→

(
A2, B2

)
Since we fixed our fiber, acting as the domain, by the uniqueness of inverses in SU(2) our map ψ is
well-defined and surjective. Moreover, by this uniqueness property and the fact that we fixed our
A1, B1, A3 and B3 arguments, we must have that the map is injective, thus ψ is a bijection. Now
we observe that ψ is a restriction of the projection map

p : SU(2)6 −→ SU(2)2

which we know to be continuous as projections in the product topology are continuous, thus ψ is
continuous. Furthermore, ψ−1 is a restriction of the inclusion map

i : SU(2)2 −→ SU(2)6

which we know to be continuous as inclusions in the product topology are continuous, thus ψ−1 is
continuous. Therefore, ψ is a homeomorphism, that is

π−1
(
A1, B1, A3, B3

) ∼= {
(A2, B2) ∈ SU(2)2 : [A2, B2] = [A1, B1]

−1
}

Importantly, observe that {
(A2, B2) ∈ SU(2)2 : [A2, B2] = [A1, B1]

−1
}

is just a fiber over the commutator map of SU(2) and thus is connected (Goldman, Topolog-
ical Components of Spaces of Representations). Since we have shown that an arbitrary fiber,
π−1(A1, B1, A3, B3), is connected, it follows that the fibers of our map π are connected. Therefore,
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π is a continuous, surjective map with connected fibers from our total space Fix(Φ∗) into our de-
fined base space B. So it remains to show that B is connected. For this we begin by examining the
relations in B, observing that [

A1, A3

]
=

[
A1, B3

]
=

[
A3, B3

]
= I

implies that A1, A3, B3 all commute. Recall that any two elements of SU(2) commute if and only
if they lie in the same maximal torus, which in SU(2) is conjugate to the subgroup of diagonal
matrices (Brocker and tom Dieck, Representations of Compact Lie Groups, Theorem IV.2.3). Let
T denote a maximal torus in SU(2),

T =

{(
eiθ 0
0 e−iθ

)
: θ ∈ [0, 2π)

}
Since A1, A3, B3 commute, there exists g ∈ SU(2) such that

gA1g
−1, gA3g

−1, gB3g
−1 ∈ T

This follows from the fact that all maximal tori in SU(2) are conjugate and every element is
contained in some maximal torus (Brocker and tom Dieck, Representations of Compact Lie Groups,
Theorem IV.1.6). Therefore, the set of commuting 3-tuples in SU(2) is

C :=
{
(a1, a3, b3) ∈ SU(2)3 : [a1, a3] = [a1, b3] = [a3, b3] = I

}
=

{
(gt1g

−1, gt2g
−1, gt3g

−1) : g ∈ SU(2), t1, t2, t3 ∈ T
}

We wish to show that C is connected, in order to do so we define the map

Ω : SU(2)× T3 −→ C

by

Ω
(
g, (t1, t2, t3)

)
=

(
gt1g

−1, gt2g
−1, gt3g

−1
)
.

Observe that the domain of the map, SU2 × T3, is connected since SU(2) is connected, T is
connected, and the finite product of connected spaces is connected (Munkres, Topology, Theorem
23.6). Therefore, it suffices to show that Ω is continuous and surjective, as the image of a connected
space under a continuous map is connected (Munkres, Topology, Theorem 23.5). We begin by
verifying the surjectivity of Ω. Let (a1, a3, b3) ∈ C, then there exists g ∈ SU(2) such that

g−1a1g, g
−1a3g, g

−1b3g ∈ T.

This follows from the fact that all maximal tori in SU(2) are conjugate and every element is
contained in some maximal torus. Now, set

t1 = g−1a1g, t2 = g−1a3g, t3 = g−1b3g.

Thus, every element of C is in the image of Ω and so the map is sujective. For the continuity of
the map, we note that Ω is defined on group operations, multiplication and inversion, which are
smooth in SU(2), and so the map is continuous. Hence, C is connected. Now, there are no relations
involving B1 in the definition of B, therefore, for any fixed commuting 3-tuple (A1, A3, B3), B1 can
be any element in SU(2). Thus,

B ∼= C × SU(2).

We know that SU(2) is connected and we have just show that C is connected, therefore, since the
finite product of connected spaces is connected, it follows that B is connected. So we have shown
that there is a continuous surjection

π : Fix(Φ∗) −→ B

with non-empty, connected fibers. Since every fiber is non-empty and connected, and the base
space B is connected, it follows that Fix(Φ∗) is connected. □
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With the fixed point set corresponding to this first power of Φ∗ done, we now will move on to attempt to classify
higher powers of Φ∗.

2. Computing Powers of Φ, (n = 2)

2.

• Tγ1◦T−1
γ2 : α1 7→ [α3, β3]α1[α3, β3]

−1

α2 7→ α2

α3 7→ [α3, β3]α1α3α
−1
1 [α3, β3]

−1

β1 7→ β1[α3, β3]
−1

β2 7→ β2
β3 7→ [α3, β3]α1β3α

−1
1 [α3, β3]

−1

• Tγ1 ◦ T−1
γ2 ◦ Tγ1 ◦ T−1

γ2 : α1 7→ [α3, β3]α1[α3, β3]α1[α3, β3]
−1α−1

1 [α3, β3]
−1

β1 7→ β1α1[α3, β3]
−1α−1

1 [α3, β3]
−1

α2 7→ α2

β2 7→ β2
α3 7→ [α3, β3]α1[α3, β3]α1α3α

−1
1 [α3, β3]

−1α−1
1 [α3, β3]

−1

β3 7→ [α3, β3]α1[α3, β3]α1β3α
−1
1 [α3, β3]

−1α−1
1 [α3, β3]

−1

2.1. Fixed Point Equations for
(
Tγ1 ◦ T−1

γ2 ◦ Tγ1 ◦ T−1
γ2

)∗
.

2.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

• On R(Σ, G) : A1 7→ [A3, B3]A1[A3, B3]A1[A3, B3]
−1A−1

1 [A3, B3]
−1

B1 7→ B1A1[A3, B3]
−1A−1

1 [A3, B3]
−1

A2 7→ A2

B2 7→ B2

A3 7→ [A3, B3]A1[A3, B3]A1A3A
−1
1 [A3, B3]

−1A−1
1 [A3, B3]

−1

B3 7→ [A3, B3]A1[A3, B3]A1B3A
−1
1 [A3, B3]

−1A−1
1 [A3, B3]

−1

• On R(Σ, G)/G : T−1A1T 7→ [A3, B3]A1[A3, B3]A1[A3, B3]
−1A−1

1 [A3, B3]
−1

T−1B1T 7→ B1A1[A3, B3]
−1A−1

1 [A3, B3]
−1

T−1A2T 7→ A2

T−1B2T 7→ B2

T−1A3T 7→ [A3, B3]A1[A3, B3]A1A3A
−1
1 [A3, B3]

−1A−1
1 [A3, B3]

−1

T−1B3T 7→ [A3, B3]A1[A3, B3]A1B3A
−1
1 [A3, B3]

−1A−1
1 [A3, B3]

−1

2.2. Computing Φ2 = Tγ1 ◦ T−1
γ2 ◦ Tγ1 ◦ T−1

γ2 .
2.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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• Φ2(α1) :

Φ(α1) = [α3, β3]α1[α3, β3]
−1

Φ
(
Φ(α1)

)
= Φ([α3, β3]α1[α3, β3]

−1)

= Φ([α3, β3])Φ(α1)Φ([α3, β3]
−1)

= Φ([α3, β3])Φ(α1)
(
Φ([α3, β3])

)−1

= Φ(α3β3α
−1
3 β−1

3 )Φ(α1)
(
Φ(α3β3α

−1
3 β−1

3 )
)−1

= Φ(α3)Φ(β3)Φ(α
−1
3 )Φ(β−1

3 )Φ(α1)
(
Φ(α3)Φ(β3)Φ(α

−1
3 )Φ(β−1

3 )
)−1

= Φ(α3)Φ(β3)
(
Φ(α3)

)−1(
Φ(β3)

)−1
Φ(α1)

(
Φ(α3)Φ(β3)

(
Φ(α3)

)−1(
Φ(β3)

)−1)−1

= [α3, β3]α1α3α
−1
1 [α3, β3]

−1[α3, β3]α1β3α
−1
1 [α3, β3]

−1[α3, β3]α1α
−1
3 α−1

1 [α3, β3]
−1[α3, β3]α1β

−1
3 α−1

1

[α3, β3]
−1[α3, β3]α1[α3, β3]

−1[α3, β3]α1β3α
−1
1 [α3, β3]

−1[α3, β3]α1α3α
−1
1 [α3, β3]

−1[α3, β3]α1β
−1
3

α−1
1 [α3, β3]

−1[α3, β3]α1α
−1
3 α−1

1 [α3, β3]
−1

= [α3, β3]α1α3β3α
−1
3 β−1

3 α1β3α3β
−1
3 α−1

3 α−1
1 [α3, β3]

−1

= [α3, β3]α1[α3, β3]α1[β3, α3]α
−1
1 [α3, β3]

−1

= [α3, β3]α1[α3, β3]α1[α3, β3]
−1α−1

1 [α3, β3]
−1

Φ2(α1) = [α3, β3]α1[α3, β3]α1[α3, β3]
−1α−1

1 [α3, β3]
−1

• Φ2(β1) :

Φ(β1) = β1[α3, β3]
−1

Φ
(
Φ(β1)

)
= Φ(β1[α3, β3]

−1)

= Φ(β1)Φ([α3, β3]
−1)

= Φ(β1)
(
Φ([α3, β3])

)−1

= Φ(β1)
(
Φ(α3)Φ(β3)Φ(α

−1
3 )Φ(β−1

3 )
)−1

= Φ(β1)
(
Φ(α3)Φ(β3)

(
Φ(α3)

)−1(
Φ(β3)

)−1)−1

= β1[α3, β3]
−1[α3, β3]α1β3α

−1
1 [α3, β3]

−1[α3, β3]α1α3α
−1
1 [α3, β3]

−1[α3, β3]α1β
−1
3

α−1
1 [α3, β3]

−1[α3, β3]α1α
−1
3 α−1

1 [α3, β3]
−1

= β1α1β3α3β
−1
3 α−1

3 α−1
1 [α3, β3]

−1

= β1α1[β3, α3]α
−1
1 [α3, β3]

−1

= β1α1[α3, β3]
−1α−1

1 [α3, β3]
−1

Φ2(β1) = β1α1[α3, β3]
−1α−1

1 [α3, β3]
−1

• Φ2(α2) :
Φ(α2) = α2

Φ
(
Φ(α2)

)
= Φ(α2)

= α2

Φ2(α2) = α2
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• Φ2(β2) :
Φ(β2) = β2

Φ
(
Φ(β2)

)
= Φ(β2)

= β2

Φ2(β2) = β2

• Φ2(α3) :

Φ(α3) = [α3, β3]α1α3α
−1
1 [α3, β3]

−1

Φ
(
Φ(α3)

)
= Φ([α3, β3]α1α3α

−1
1 [α3, β3]

−1)

= Φ([α3, β3])Φ(α1)Φ(α3)Φ(α
−1
1 )Φ([α3, β3]

−1)

= Φ([α3, β3])Φ(α1)Φ(α3)Φ(α
−1
1 )

(
Φ([α3, β3])

)−1

= Φ(α3β3α
−1
3 β−1

3 )Φ(α1)Φ(α3)Φ(α
−1
1 )

(
Φ(α3β3α

−1
3 β−1

3 )
)−1

= Φ(α3)Φ(β3)Φ(α
−1
3 )Φ(β−1

3 )Φ(α1)Φ(α3)Φ(α
−1
1 )

(
Φ(α3)Φ(β3)Φ(α

−1
3 )Φ(β−1

3 )
)−1

= Φ(α3)Φ(β3)
(
Φ(α3)

)−1(
Φ(β3)

)−1
Φ(α1)Φ(α3)

(
Φ(α1)

)−1(
Φ(α3)Φ(β3)

(
Φ(α3)

)−1(
Φ(β3

)−1)−1

= [α3, β3]α1α3α
−1
1 [α3, β3]

−1[α3, β3]α1β3α
−1
1 [α3, β3]

−1[α3, β3]α1α
−1
3 α−1

1 [α3, β3]
−1[α3, β3]α1β

−1
3 α−1

1

[α3, β3]
−1[α3, β3]α1[α3, β3]

−1[α3, β3]α1α3α
−1
1 [α3, β3]

−1[α3, β3]α
−1
1 [α3, β3]

−1[α3, β3]α1β3α
−1
1

[α3, β3]
−1[α3, β3]α1α3α

−1
1 [α3, β3]

−1[α3, β3]α1β
−1
3 α−1

1 [α3, β3]
−1[α3, β3]α1α

−1
3 α−1

1 [α3, β3]
−1

= [α3, β3]α1α3β3α
−1
3 β−1

3 α1α3α
−1
1 β3α3β

−1
3 α−1

3 α−1
1 [α3, β3]

−1

= [α3, β3]α1[α3, β3]α1α3α
−1
1 [β3, α3]α

−1
1 [α3, β3]

−1

= [α3, β3]α1[α3, β3]α1α3α
−1
1 [α3, β3]

−1α−1
1 [α3, β3]

−1

Φ2(α3) = [α3, β3]α1[α3, β3]α1α3α
−1
1 [α3, β3]

−1α−1
1 [α3, β3]

−1

• Φ2(β3) :

Φ(β3) = [α3, β3]α1β3α
−1
1 [α3, β3]

−1

Φ
(
Φ(β3)

)
= Φ([α3, β3]α1β3α

−1
1 [α3, β3]

−1)

= Φ([α3, β3])Φ(α1)Φ(β3)Φ(α
−1
1 )Φ([α3, β3]

−1)

= Φ([α3, β3])Φ(α1)Φ(β3)Φ(α
−1
1 )

(
Φ([α3, β3])

)−1

= Φ(α3β3α
−1
3 β−1

3 )Φ(α1)Φ(β3)Φ(α
−1
1 )

(
Φ(α3β3α

−1
3 β−1

3 )
)−1

= Φ(α3)Φ(β3)Φ(α
−1
3 )Φ(β−1

3 )Φ(α1)Φ(β3)Φ(α
−1
1 )

(
Φ(α3)Φ(β3)Φ(α

−1
3 )Φ(β−1

3 )
)−1

= Φ(α3)Φ(β3)
(
Φ(α3)

)−1(
Φ(β3)

)−1
Φ(α1)Φ(β3)

(
Φ(α1)

)−1(
Φ(α3)Φ(β3)

(
Φ(α3)

)−1(
Φ(β3

)−1)−1

= [α3, β3]α1α3α
−1
1 [α3, β3]

−1[α3, β3]α1β3α
−1
1 [α3, β3]

−1[α3, β3]α1α
−1
3 α−1

1 [α3, β3]
−1[α3, β3]α1β

−1
3 α−1

1

[α3, β3]
−1[α3, β3]α1[α3, β3]

−1[α3, β3]α1β3α
−1
1 [α3, β3]

−1[α3, β3]α
−1
1 [α3, β3]

−1[α3, β3]α1β3α
−1
1

[α3, β3]
−1[α3, β3]α1α3α

−1
1 [α3, β3]

−1[α3, β3]α1β
−1
3 α−1

1 [α3, β3]
−1[α3, β3]α1α

−1
3 α−1

1 [α3, β3]
−1

= [α3, β3]α1α3β3α
−1
3 β−1

3 α1β3α
−1
1 β3α3β

−1
3 α−1

3 α−1
1 [α3, β3]

−1

= [α3, β3]α1[α3, β3]α1β3α
−1
1 [β3, α3]α

−1
1 [α3, β3]

−1

= [α3, β3]α1[α3, β3]α1β3α
−1
1 [α3, β3]

−1α−1
1 [α3, β3]

−1



10 CONTENTS

Φ2(β3) = [α3, β3]α1[α3, β3]α1β3α
−1
1 [α3, β3]

−1α−1
1 [α3, β3]

−1

2.3. Checking Relation.
2.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

• Φ2 := Tγ1 ◦ T−1
γ2 ◦ Tγ1 ◦ T−1

γ2 :

(i)
[
Φ2(α1),Φ

2(β1)
][
Φ2(α2),Φ

2(β2)
][
Φ2(α1),Φ

2(β1)
]

(ii)
[
[α3, β3]α1[α3, β3]α1[α3, β3]

−1α−1
1 [α3, β3]

−1, β1α1[α3, β3]
−1α−1

1 [α3, β3]
−1

][
α2, β2

]
[α3, β3]α1[α3, β3]α1

[
α3, β3

]
α−1
1 [α3, β3]

−1α−1
1 [α3, β3]

−1

(iii) [α3, β3]α1[α3, β3]α1[α3, β3]
−1α−1

1 [α3, β3]
−1β1α1[α3, β3]

−1α−1
1 [α3, β3]

−1

[α3, β3]α1[α3, β3]α
−1
1 [α3, β3]

−1α−1
1 [α3, β3]

−1[α3, β3]α1[α3, β3]α
−1
1 β−1

1

[
α2, β2

]
[α3, β3]α1[α3, β3]α1

[
α3, β3

]
α−1
1 [α3, β3]

−1α−1
1 [α3, β3]

−1

(iv) [α3, β3]α1[α3, β3]α1[α3, β3]
−1α−1

1 [α3, β3]
−1α−1

1 α1β1α
−1
1 β−1

1

[
α2, β2

][
α3, β3

]
α1[α3, β3]α1[α3, β3]α

−1
1 [α3, β3]

−1α−1
1 [α3, β3]

−1

(v) [α3, β3]α1[α3, β3]α1[α3, β3]
−1α−1

1 [α3, β3]
−1α−1

1 α1β1α
−1
1 β−1

1

[
α2, β2

][
α3, β3

]
α1[α3, β3]α1[α3, β3]α

−1
1 [α3, β3]

−1α−1
1 [α3, β3]

−1

(vi) [α3, β3]α1[α3, β3]α1[α3, β3]
−1α−1

1 [α3, β3]
−1α−1

1

[
α1, β1

][
α2, β2

][
α3, β3

]
α1[α3, β3]α1[α3, β3]α

−1
1 [α3, β3]

−1α−1
1 [α3, β3]

−1

(vii) [α3, β3]α1[α3, β3]α1[α3, β3]
−1α−1

1 [α3, β3]
−1α−1

1 α1[α3, β3]α1[α3, β3]α
−1
1 [α3, β3]

−1α−1
1 [α3, β3]

−1

(viii) 1

2.4. Computing Fix
(
(Φ ◦ Φ)∗

)
.

2.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

• A1 :

A1 = [A3, B3]A1[A3, B3]A1 [A3, B3]
−1A−1

1 [A3, B3]
−1

A1 = A1A1A
−1
1

A1 = A1

• B1 :

B1 = B1A1[A3, B3]
−1A−1

1 [A3, B3]
−1

I = A1[A3, B3]
−1A−1

1 [A3, B3]
−1

[A3, B3]A1[A3, B3] = A1

[A3, B3]A1[A3, B3]A1 = A1A1(
[A3, B3]A1

)2
=

(
A1

)2
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• A3 :
A3 = [A3, B3]A1[A3, B3]A1A3A

−1
1 [A3, B3]

−1A−1
1 [A3, B3]

−1

A3 = A1A1A3A
−1
1 A−1

1

A3A1A1 = A1A1A3[
(A1)

2, A3

]
= I

• B3 :
B3 = [A3, B3]A1[A3, B3]A1B3A

−1
1 [A3, B3]

−1A−1
1 [A3, B3]

−1

B3 = A1A1B3A
−1
1 A−1

1

B3A1A1 = A1A1B3[
(A1)

2, B3

]
= I

Therefore, with the relations (
[A3, B3]A1

)2
=

(
A1

)2[
(A1)

2, A3

]
= I[

(A1)
2, B3

]
= I

our fixed point set for the map
(
Φ ◦ Φ

)∗
=

(
Tγ1 ◦ T−1

γ2 ◦ Tγ1 ◦ T−1
γ2

)∗
is defined as follows:

Fix
(
(Φ2)∗

)
=

{(
Ai, Bi

)
∈ SU(2)6 :

3∏
i=1

[
Ai, Bi

]
= I,

(
[A3, B3]A1

)2
=

(
A1

)2
,
[(
A1

)2
, A3

]
= I,

[(
A1

)2
, B3

]
= I

}
Now, observe that (A1)

2 is involved in three of our four relations, and that based on this A1 essentially determines
the other five entries. Thus define the map

µ : Fix
(
(Φ2)∗

)
−→ SU(2)

given by (
A1, B1, A2, B2, A3, B3

)
7−→ A1

First, note that µ is a restriction of the projection map

p : SU(2)6 −→ SU(2)

which we know to be continuous as projections in the product topology are continuous, thus µ is continuous. Next
we claim that µ is surjective.

Lemma 1. The map

µ : Fix
(
(Φ2)∗

)
−→ SU(2)(

A1, B1, A2, B2, A3, B3

)
7−→ A1

is surjective

Proof. Let A1 ∈ SU(2). Now we wish to find corresponding B1, A2, B2, A3, B3 ∈ SU(2) such that
the 6-tuple lies in our fixed point set, that is(

A1, B1, A2, B2, A3, B3

)
∈ Fix

(
(Φ2)∗

)
To do so let us consider the relations that these matrices must satisfy∏3

i=1

[
Ai, Bi

]
= I(

[A3, B3]A1

)2
=

(
A1

)2[
(A1)

2, A3

]
=

[
(A1)

2, B3

]
= I
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Observe that for the second and third relations, if we take both A3 and B3 to be the identity matrix
then these two are satisfied. Furthermore, for the product of the commutator relation, with our
choices of A3 and B3, this becomes [

A1, B1

]
=

[
A2, B2

]−1

Thus, we may choose our B1, A2 and B2 such that this equality holds, for simplicity’s sake again
set them equal to the identity. With this 6-tuple(

A1, IB1 , IA2 , IB2 , IA3 , IB3

)
we have shown that it satisfies the relations in our fixed point set and thus for arbitrary A1 ∈ SU(2)
have found a corresponding element of our domain. Therefore, our map µ is surjective. □

Having shown that our map µ is a continuous surjection, we now wish to use it to classify our fixed point set. To

do so we first define the following sets in SU(2) based on our possible values of
(
A1

)2
. Let

A2
̸± :=

{
A1 ∈ SU(2) :

(
A1

)2 ̸= ±I
}

be the set of all A1 whose 2-nd power is non-central in SU(2) and let

A2
± :=

{
A1 ∈ SU(2) :

(
A1

)2
= ±I

}
denote the set of all A1 whose 2-nd power is central in SU(2). However, note that we can further partition this
second set into the following two subsets,

A2
+ :=

{
A1 ∈ SU(2) :

(
A1

)2
= I

}
=

{
− I, I

}
and

A2
− :=

{
A1 ∈ SU(2) :

(
A1

)2
= −I

}
We may note that by construction, these three sets partition SU(2) as they represent the collection of fibers of the
2-nd power map. Now, with these sets we may consider their preimages under our map µ, notably,

µ−1
(
A2

̸±
)
=

{
(A1, B1, A2, B2, A3, B3) ∈ Fix

(
(Φ2)∗

)
:
(
A1

)2 ̸= ±I
}

and
µ−1

(
A2

±
)
=

{
(A1, B1, A2, B2, A3, B3) ∈ Fix

(
(Φ2)∗

)
:
(
A1

)2
= ±I

}
which we can represent as

µ−1
(
A2

±
)
=

(
µ−1(I) ∪ µ−1(−I)

)
∪ µ−1

(
A2

−
)

with
µ−1

(
I
)
=

{
(I,B1, A2, B2, A3, B3) ∈ Fix

(
(Φ2)∗

)}
µ−1

(
− I

)
=

{
(−I,B1, A2, B2, A3, B3) ∈ Fix

(
(Φ2)∗

)}
and

µ−1
(
A2

−
)
=

{
(A1, B1, A2, B2, A3, B3) ∈ Fix

(
(Φ2)∗

)
:
(
A1

)2
= −I

}
Since µ is a continuous surjection and as previously noted our characterization sets, A2

̸± and A2
± partition SU(2),

it follows that our fixed point set may be expressed as the union of these respective preimages, that is

Fix
(
(Φ2)∗

)
= µ−1

(
A2

̸±
)
∪ µ−1

(
A2

±
)
= µ−1

(
A2

̸±
)
∪
(
(µ−1(I) ∪ µ−1(−I)) ∪ µ−1

(
A2

−
))

Therefore, in order to classify the connectedness of our fixed point set, it suffices to investigate the connectedness
of these preimages. First, we will consider the preimage over the collection of A1 such that their 2-nd power is a
non-central element of SU(2). To do so lets fix A1 ∈ A2

̸±. Then, we will consider our original relations from the

fixed point set. We begin by noting that by our last two relations, we know that
(
A1

)2
commutes with both A3

and B3. Thus, by definition A3 and B3 are in the centralizer of
(
A1

)2
. Since

(
A1

)2
is assumed to be a non-central

element, its centralizer is a maximal torus in SU(2). It follows that both A3 and B3 lie in this maximal torus.
Recall that every maximal torus is abelian, hence, A3 and B3 must commute, that is[

A3, B3

]
= I
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Now we may consider the product of the commutator relation, noting that with A3 and B3 commuting our
expression simplifies as follows ∏3

i=1

[
Ai, Bi

]
= I[

A1, B1

][
A2, B2

][
A3, B3

]
= I[

A1, B1

][
A2, B2

]
= I[

A1, B1

]
=

[
A2, B2

]−1

Next lets examine our second relation. Observe that since the commutator of A3 and B3 is in the center of SU(2),
then it commutes with A1 and so we may distribute the exponent and realize that this relation is trivial. Therefore,
for each A1 ∈ A2

̸± we can express its corresponding stratum of the fixed point set as

{A1}×F ̸±
A1

:=
{
A1

}
×
{
(B1, A2, B2, A3, B3) ∈ SU(2)5 :

[
A1, B1

]
=

[
A2, B2

]−1
,
[
A3, B3

]
=

[
(A1)

2, A3

]
=

[
(A1)

2, B3

]
= I

}
Hence, the preimage µ−1

(
A2

̸±
)
can be represented by the union of over all such A1 ∈ A2

̸± of these corresponding
fixed point stratum sets, that is

µ−1
(
A2

̸±
)
=

⋃
A1∈A2

̸±

{A1} × F ̸±
A1

Next, we will consider the preimage over the collection A1 such that their 2-nd power is a central element of SU(2).
To do so lets fix A1 ∈ A2

±. Then, we will consider our original relations from the fixed point set. We begin by
considering the product of the commutators relation, noting that we cannot simplify this with the extra condition
on A1, and so we move on. Next lets examine our second relation. Observe that by our intial assumption on A1

this relation simplifies to (
[A3, B3]A1

)2
= ±I

Finally, examining our last two relations, since (A1)
2 commutes with every element of SU(2), then these relations

are trivial. Thus for each A1 ∈ A2
± we can express its corresponding stratum of the fixed point set as

{A1} × F±
A1

:=
{
A1

}
×

{
(B1, A2, B2, A3, B3) ∈ SU(2)5 :

3∏
i=1

[
Ai, Bi

]
= I,

(
[A3, B3]A1

)2
= ±I

}
However, as we previously observed, we can split A2

± into two subsets, A2
+ and A2

−. Therefore, for each A
′
1 ∈ A2

+

we can express its corresponding stratum of the fixed point set as

{A′
1} × F+

A′
1
:=

{
A′

1

}
×

{
(B1, A2, B2, A3, B3) ∈ SU(2)5 :

3∏
i=1

[
Ai, Bi

]
= I,

(
[A3, B3]A

′
1

)2
= I

}
Likewise, for each A′′

1 ∈ A2
− we can express its corresponding stratum of the fixed point set as

{A′′
1} × F−

A′′
1
:=

{
A′′

1

}
×

{
(B1, A2, B2, A3, B3) ∈ SU(2)5 :

3∏
i=1

[
Ai, Bi

]
= I,

(
[A3, B3]A

′′
1

)2
= −I

}
Now, note that these two fixed point stratum sets are disjoint as their corresponding characterization sets A2

+ and

A2
− are disjoint and so the A1 arguments of each respective set cannot agree. Hence, the preimage µ−1

(
A2

±
)
can

be represented as the disjoint union of the two respective unions over all such A′
1 ∈ A2

+ and A′′
1 ∈ A2

− of these
corresponding fixed point stratum sets, that is

µ−1
(
A2

±
)
=

⋃
A′

1∈A2
+

{A′
1} × F+

A′
1
⊔

⋃
A′′

1∈A2
−

{A′′
1} × F−

A′′
1

Now that we have described each respective preimage of µ which partition our fixed point set. We may observe
that our fixed point set can be represented as the disjoint union of three respective unions of our fixed point
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stratum sets, {A1} × F ̸±
A1
, {A′

1} × F+
A′

1
, and {A′′

1} × F−
A′′

1
, over our A1 characterization sets, A2

̸±, A2
+, and A2

−.

That is, from our original representation

Fix
(
(Φ2)∗

)
= µ−1

(
A2

̸±
)
∪
(
(µ−1(I) ∪ µ−1(−I)) ∪ µ−1

(
A2

−
))

we have that

Fix
(
(Φ2)∗

)
=

⋃
A1∈A2

̸±

{A1} × F ̸±
A1

∪ {I} × F+
I ∪ {−I} × F+

−I ∪
⋃

A′′
1∈A2

−

{A′′
1} × F−

A′′
1

Due note that this is technically a disjoint union of these respective unions as by construction the A1 argument
of each respective collection of fixed point stratum sets cannot agree. Therefore, as we attempt to classify the
connectedness of our fixed point set, it suffices to determine the connectedness of each collection of fixed point
stratum sets respectively. We will begin by investigating the connectedness of the preimage of our characterization
set A2

̸±, that is

µ−1
(
A2

̸±
)
=

⋃
A1∈A2

̸±

{A1} × F ̸±
A1

To do so we first consider each individual fixed point stratum set {A1} × F ̸±
A1
.

Lemma 2. {A1} × F ̸±
A1

is connected for every A1 ∈ A2
̸±

Proof. Fix A1 ∈ A2
̸±. With

{A1}×F ̸±
A1

:=
{
A1

}
×
{
(B1, A2, B2, A3, B3) ∈ SU(2)5 :

[
A1, B1

]
=

[
A2, B2

]−1
,
[
A3, B3

]
=

[
(A1)

2, A3

]
=

[
(A1)

2, B3

]
= I

}
we begin by noting that the singleton set {A1} is connected in SU(2) and the product

{A1} × F ̸±
A1

is homeomorphic to F ̸±
A1
, as it is just a copy of this set at A1. Thus to determine the connectedness

of the fixed point stratum set, it suffices to show the connectedness of F ̸±
A1
. With this, we first

define

B ̸±
A1

:=
{
(B1, A3, B3) ∈ SU(2)3 :

[
A3, B3

]
=

[
(A1)

2, A3

]
=

[
(A1)

2, B3

]
= I

}
Now consider the map

π : F ̸±
A1

−→ B ̸±
A1

given by (
B1, A2, B2, A3, B3

)
7−→

(
B1, A3, B3

)
Note that π is a restriction of the projection map

p : SU(2)5 −→ SU(2)3

which we know to be continuous as projections in the product topology are continuous, thus π is

continuous. Additionally, we claim that π is surjective. To see this, take
(
B1, A3, B3

)
∈ B ̸±

A1
. By

the definition of B ̸±
A1
, we have[

A3, B3

]
= I

[
(A1)

2, A3

]
= I

[
(A1)

2, B3

]
= I

Thus our goal is to find an A2, B2 ∈ SU(2) such that the 5-tuple
(
B1, A2, B2, A3, B3

)
lies in F ̸±

A1
.

That is [
A1, B1

]
=

[
A2, B2

]−1

Define

A2 := A−1
1 and B2 := B−1

1 ,
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note that since SU(2) is a group, then A2, B2 ∈ SU(2). Now, observe that[
A1, B1

]
= A1B1A

−1
1 B−1

1 = A−1
2 B−1

2 A2B2 =
[
A2, B2

]−1

Hence along with the assumed commutation relations in B ̸±
A1
, it follows that(

B1, A2, B2, A3, B3

)
∈ F ̸±

A1

and thus

π
(
B1, A2, B2, A3, B3

)
=

(
B1, A3, B3

)
so π is surjective. Now that we have established that π is a continuous surjection, let us consider

the fibers of this map. Given a point
(
B1, A3, B3

)
∈ B ̸±

A1
, the fiber over this point is defined as

π−1
(
B1, A3, B3

)
=

{
(B1, A2, B2, A3, B3) ∈ F ̸±

A1

}
Note that since in F ̸±

A1
the only relation involving

(
A2, B2

)
is[

A2, B2

]
=

[
A1, B1

]−1

we may fix
(
B1, A3, B3

)
∈ B ̸±

A1
and define the map

ψ : π−1
(
B1, A3, B3

)
−→

{
(A2, B2) ∈ SU(2)2 : [A2, B2] = [A1, B1]

−1
}

given by (
B1, A2, B2, A3, B3

)
7−→

(
A2, B2

)
Since we fixed our fiber, acting as the domain, by the uniqueness of inverses in SU(2) our map ψ is
well-defined and surjective. Moreover, by this uniqueness property and the fact that we fixed our
B1, A3 and B3 arguments, we must have that the map is injective, thus ψ is a bijection. Now we
observe that ψ is a restriction of the projection map

p : SU(2)5 −→ SU(2)2

which we know to be continuous as projections in the product topology are continuous, thus ψ is
continuous. Furthermore, ψ−1 is a restriction of the inclusion map

i : SU(2)2 −→ SU(2)5

which we know to be continuous as inclusions in the product topology are continuous, thus ψ−1 is
continuous. Therefore, ψ is a homeomorphism, that is

π−1
(
B1, A3, B3

) ∼= {
(A2, B2) ∈ SU(2)2 : [A2, B2] = [A1, B1]

−1
}
.

Importantly, observe that {
(A2, B2) ∈ SU(2)2 : [A2, B2] = [A1, B1]

−1
}

is just a fiber over the commutator map of SU(2) and thus is connected. Since we have shown
that an arbitrary fiber, π−1(B1, A3, B3), is connected, it follows that the fibers of our map π are
connected. Therefore, π is a continuous, surjective map with connected fibers from our total space

F ̸±
A1

into our defined base space B ̸±
A1
. Thus, we will now investigate the connectedness of this base

space B±
A1
. To do so let us first examine the commutation relations in B ̸±

A1
, noting that[

A3, B3

]
=

[
(A1)

2, A3

]
=

[
(A1)

2, B3

]
= I

implies that A3, B3 commute. Recall that any two elements of SU(2) commute if and only if they
lie in the same maximal torus, which in SU(2) is conjugate to the subgroup of diagonal matrices.
Let T denote a maximal torus in SU(2),

T =

{(
eiθ 0
0 e−iθ

)
: θ ∈ [0, 2π)

}
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Since A3, B3 commute, there exists g ∈ SU(2) such that

g A3g
−1, g B3g

−1 ∈ T

This follows from the fact that all maximal tori in SU(2) are conjugate and every element is
contained in some maximal torus. Therefore, the set of commuting 2-tuples in SU(2) is

C ̸±
A1

:=
{
(a3, b3) ∈ SU(2)2 : [a3, b3] = I

}
=

{
(g t1g

−1, g t2g
−1) : g ∈ SU(2), t1, t2 ∈ T

}
We wish to show that C ̸±

A1
is connected, in order to do so we define the map

Ω : SU(2)× T2 −→ C ̸±
A1

by

Ω
(
g, (t1, t2)

)
=

(
g t1g

−1, g t2g
−1

)
.

Observe that the domain of the map, SU(2) × T2, is connected since SU(2) is connected, T is
connected, and the finite product of connected spaces is connected. Therefore, it suffices to show
that Ω is continuous and surjective, as the image of a connected space under a continuous map

is connected. We begin by verifying the surjectivity of Ω. Let (a3, b3) ∈ C ̸±
A1

, then there exists

g ∈ SU(2) such that

g−1a3g, g
−1b3g ∈ T.

This follows from the fact that all maximal tori in SU(2) are conjugate and every element is
contained in some maximal torus. Now, if we set

t1 = g−1a3g and t2 = g−1b3g.

then every element of C ̸±
A1

is in the image of SU(2)×T2 under Ω and so the map is surjective. For the
continuity of the map, we note that Ω is defined on group operations, multiplication and inversion,

which are smooth in SU(2), and so the map is continuous. Hence, C ̸±
A1

is connected. Now, there

are no relations involving B1 in the definition of B ̸±
A1

, therefore, for any fixed commuting 2-tuple(
A3, B3

)
, B1 can be any element in SU(2). Thus,

B ̸±
A1

∼= C ̸±
A1

× SU(2).

We know that SU(2) is connected and we have just shown that C ̸±
A1

is connected, therefore, since

the finite product of connected spaces is connected, it follows that B ̸±
A1

is connected. To recap, we
have shown that there is a continuous surjection

π : F ̸±
A1

−→ B ̸±
A1

with non-empty, connected fibers. Therefore, since the base space B ̸±
A1

is connected, it follows that

F ̸±
A1

is connected. Hence the entire fixed point stratum set

{A1} × F ̸±
A1

is connected. □

We have now shown that for our preimage over the characterization set A2
̸± each fixed point stratum set is

connected. So to determine the connectedness of µ−1
(
A2

̸±
)
we need to consider the union of all such fixed point

stratum sets over our characterization set.

Lemma 3. µ−1
(
A2

̸±
)
=

⋃
A1∈A2

̸±
{A1} × F ̸±

A1
has 2 connected components
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Proof. We begin by noting that by the previous lemma, we know that for each A1 ∈ A2
̸± our

corresponding fixed point stratum set

{A1}×F ̸±
A1

:=
{
A1

}
×
{
(B1, A2, B2, A3, B3) ∈ SU(2)5 :

[
A1, B1

]
=

[
A2, B2

]−1
,
[
A3, B3

]
=

[
(A1)

2, A3

]
=

[
(A1)

2, B3

]
= I

}
is connected. Thus the remaining determination of the connectedness of our preimage

µ−1
(
A2

̸±
)
=

⋃
A1∈A2

̸±

{A1} × F ̸±
A1

depends on that of the parameter space, our characterization set A2
̸±. Now with

A2
̸± =

{
A1 ∈ SU(2) :

(
A1

)2 ̸= ±I
}

let us recall that this is merely the union of fibers of the 2-nd power map of SU(2). Thus we will
consider this map,

p2 : SU(2) −→ SU(2)

given by

Z 7−→ Z2

Observe that since p2 is surjective

A2
̸± = SU(2) \

(
p−1
2 (I) ∪ p−1

2 (−I)
)

Thus let us examine

SU(2) \
(
p−1
2 (I) ∪ p−1

2 (−I)
)

Note that for any W ∈ SU(2) \
(
p−1
2 (I) ∪ p−1

2 (−I)
)
, W is diagonalizable and can be written up

to conjugation as

W ∼
(
eiθ 0
0 e−iθ

)
, θ ∈ [0, π]

Now this represents the conjugacy class determined by the eigenvalues (eiθ, e−iθ), which by our
condition on W that (

W
)2 ̸= I

must satisfy (
eiθ

)2 ̸= ±1 =⇒ ei2θ ̸= ±1 ⇐⇒ 2θ ̸≡ 0 (mod π)

Therefore, we have

θ ̸= πk

2
, k ∈ Z

Due to the equivalence under conjugation of θ ∼ −θ and θ ∼ θ + 2π in SU(2), we only consider
θ ∈ [0, π]. Removing all such angles from our interval [0, π] for 0 ≤ k ≤ 2 we are left with 2 open
intervals (

0,
π

2

)
and

(
π

2
,
2π

2

)
Now, we claim that each of these open intervals corresponds to a connected component of

SU(2) \
(
p−1
2 (I) ∪ p−1

2 (−I)
)

[INSERT] DR. DUNCAN: Implicit/Inverse Function Theorem Argument

□
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With this we have shown that µ−1
(
A2

̸±
)
has two connected components. Thus it is left to classify the connectedness

of our two remaining preimages which partition our fixed point set. To do so, first we will consider our fixed point
stratum sets which arise in the case where the 2-nd power of A1 is in the center of SU(2), specifically when it is
equal to the identity.

Lemma 4. For every A1 ∈ A2
+, {A1} × F+

A1
has two connected components

Proof. Let us begin by noting that in SU(2) the only matrices which square to the identity matrix
are ±I. Thus our characterization set

A2
+ =

{
A1 ∈ SU(2) :

(
A1

)2
= I

}
=

{
− I, I

}
Thus we will consider the two cases for our possible A1 separately. First, take A1 = I. Then with

{I} × F+
I :=

{
I
}
×
{
(B1, A2, B2, A3, B3) ∈ SU(2)5 :

[
A2, B2

]
=

[
A3, B3

]−1
,
(
[A3, B3]

)2
= I

}
we begin by noting that the singleton set {I} is connected in SU(2) and the product

{I} × F+
I

is homeomorphic to F+
I as it is just a copy of this set at I. Thus to determine the connectedness of

the fixed point stratum set, it suffices to show the connectedness of F+
I . Now notice that in taking

A1 = I along with the simplification of the product of the commutator relation, our second relation
becomes [

A3, B2

]
= ±I

as again the only matrices in SU(2) which square to the identity matrix are ±I. Therefore, in this
case we may express our fixed point stratum set as

F+
I :=

{
(B1, A2, B2, A3, B3) ∈ SU(2)5 :

[
A2, B2

]
=

[
A3, B3

]
= ±I

}
With this form of our fixed point stratum set we may further decompose it into the sub-case where
our A2, B2 and A3, B3 commutators equal the identity and the sub-case where they equal minus
the identity, that is

F++
I :=

{
(B1, A2, B2, A3, B3) ∈ SU(2)5 :

[
A2, B2

]
=

[
A3, B3

]
= I

}
and

F+−
I :=

{
(B1, A2, B2, A3, B3) ∈ SU(2)5 :

[
A2, B2

]
=

[
A3, B3

]
= −I

}
In this first sub-case of F++

I , we observe that the relations[
A2, B2

]
= I and

[
A3, B3

]
= I

implies that A2, B2 commute and A3, B3 commute. Recall that any two elements of SU(2) commute
if and only if they lie in the same maximal torus, which in SU(2) is conjugate to the subgroup of
diagonal matrices. Let T denote a maximal torus in SU(2),

T =

{(
eiθ 0
0 e−iθ

)
: θ ∈ [0, 2π)

}
Since A2, B2 commute, there exists g ∈ SU(2) such that

g A2g
−1, g B2g

−1 ∈ T

This follows from the fact that all maximal tori in SU(2) are conjugate and every element is
contained in some maximal torus. Therefore, the set of commuting 2-tuples in SU(2) is

C++
I :=

{
(a2, b2) ∈ SU(2)2 : [a2, b2] = I

}
=

{
(g t1g

−1, g t2g
−1) : g ∈ SU(2), t1, t2 ∈ T

}
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We wish to show that C++
I is connected, in order to do so we define the map

Ω : SU(2)× T2 −→ C++
I

by

Ω
(
g, (t1, t2)

)
=

(
g t1g

−1, g t2g
−1

)
.

Observe that the domain of the map, SU(2) × T2, is connected since SU(2) is connected, T is
connected, and the finite product of connected spaces is connected. Therefore, it suffices to show
that Ω is continuous and surjective, as the image of a connected space under a continuous map
is connected. We begin by verifying the surjectivity of Ω. Let (a2, b2) ∈ C++

I , then there exists
g ∈ SU(2) such that

g−1a2g, g
−1b2g ∈ T.

This follows from the fact that all maximal tori in SU(2) are conjugate and every element is
contained in some maximal torus. Now, if we set

t1 = g−1a2g and t2 = g−1b2g.

then every element of C++
I is in the image of SU(2) × T2 under Ω and so the map is surjective.

For the continuity of the map, we note that Ω is defined on group operations, multiplication and
inversion, which are smooth in SU(2), and so the map is continuous. Hence, C++

I is connected.
Note that for this past section about the connectedness of commuting 2-tuples we utilized the
commutativity of A2 with B2, however, this argument extends the commutativity of A3 with B3.
Now, there are no relations involving B1 in the definition of F++

I , therefore, for any two fixed

commuting 2-tuples
(
A2, B2

)
and

(
A3, B3

)
, B1 can be any element in SU(2). Thus,

F++
I

∼= C++
I × C++

I × SU(2).

We know that SU(2) is connected and we have just shown that C++
I is connected, therefore, since

the finite product of connected spaces is connected, it follows that F++
I is connected. Next let us

consider our second sub-case,

F+−
I :=

{
(B1, A2, B2, A3, B3) ∈ SU(2)5 :

[
A2, B2

]
=

[
A3, B3

]
= −I

}
In this sub-case, we will take a slightly different but equally valid approach to showing that our
fixed point stratum set is connected. To start lets define the commutator map

c : SU(2)2 −→ SU(2)

given by (
X,Y

)
7−→

[
X,Y

]
Now observe that our anti-commuting pairs A2, B2 and A3, B3 are elements of the fiber over minus
the identity of the commutator map, that is(

A2, B2

)
,
(
A3, B3

)
∈ c−1(−I) =

{
(X,Y ) ∈ SU(2) :

[
X,Y

]
= −I

}
Recall that we know that the fibers of this map are connected for SU(2). There are no relations
involving B1 in the definition of F+−

I , therefore, for any two fixed anti-commuting 2-tuples
(
A2, B2

)
and

(
A3, B3

)
, B1 can be any element in SU(2). Thus,

F+−
I

∼= c−1(−I)× c−1(−I)× SU(2).

Since we know that SU(2) is connected, fiber of the commutator map is connected, and the finite
product of connected spaces is connected, it follows that F+−

I is connected. Note that since I and
−I are antipodal points we cannot connect the sets which arise from these two distinct sub-cases,
thus in the case where A1 = I we have two connected components. Now moving on to our second
case, where A1 = −I, we have

{−I} × F+
−I :=

{
− I

}
×
{
(B1, A2, B2, A3, B3) ∈ SU(2)5 :

[
A2, B2

]
=

[
A3, B3

]−1
,
(
− [A3, B3]

)2
= I

}
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Importantly, observe that the proof for this case is nearly identical to that of our previous case,
thus we may conclude in a similar fashion that it too has two connected components. □

We have now successfully classified the connectedness of two of our three preimages. Thus we turn our attention
to the final preimage which in part partitions our fixed point set. To do so, first we will consider our fixed point
stratum sets which arise in the case where the 2-nd power of A1 is in the center of SU(2), specifically when it is
equal to minus the identity.

Lemma 5. For every A1 ∈ A2
−, {A1} × F−

A1
is connected

Proof. Fix A1 ∈ A2
−. With

{A1} × F−
A1

:=
{
A1

}
×

{
(B1, A2, B2, A3, B3) ∈ SU(2)5 :

3∏
i=1

[
Ai, Bi

]
= I,

(
[A3, B3]A1

)2
= −I

}
we begin by noting that the singleton set {A1} is connected in SU(2) and the product

{A1} × F−
A1

is homeomorphic to F−
A1

as it is just a copy of this set at A1. Thus to determine the connectedness

of the fixed point stratum set, it suffices to show the connectedness of F−
A1
. With this, we first

define
B−
A1

:=
{
(B1, A3, B3) ∈ SU(2)4 : ([A3, B3]A1)

2 = −I
}

Now consider the map
π : F−

A1
−→ B−

A1

given by (
B1, A2, B2, A3, B3

)
7−→

(
B1, A3, B3

)
Note that π is a restriction of the projection map

p : SU(2)5 −→ SU(2)3

which we know to be continuous as projections in the product topology are continuous, thus π is
continuous. Additionally, we claim that π is surjective. To see this, take

(
B1, A3, B3

)
∈ B−

A1
. Then

by the definition of B−
A1
, we have (

[A3, B3]A1

)2
= −I

Thus our goal is to find an A2, B2 ∈ SU(2) such that the 5-tuple
(
B1, A2, B2, A3, B3

)
lies in F−

A1
,

that is [
A2, B2

]
=

[
A1, B1

]−1[
A3, B3

]−1

Recall that every element in SU(2) can be expressed as a commutator. Hence, because[
A1, B1

]−1[
A3, B3

]−1 ∈ SU(2)

then by the surjectivity of the commutator map in SU(2), there exists an X, Y ∈ SU(2) such that[
X,Y

]
=

[
A1, B1

]−1[
A3, B3

]−1

Define
A2 := X and B2 := Y.

Now, observe that [
A1, B1

][
X,Y

][
A3, B3

]
=

[
A1, B1

]([
A1, B1

]−1[
A3, B3

]−1)[
A3, B3

]
=

([
A1, B1

][
A1, B1

]−1)([
A3, B3

]−1[
A3, B3

])
= I
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Hence along with the relation in B−
A1
, it follows that(
B1, A2, B2, A3, B3

)
∈ F−

A1

and thus

π
(
B1, A2, B2, A3, B3

)
=

(
B1, A3, B3

)
so π is surjective. Now that we have established that π is a continuous surjection, let us consider
the fibers of this map. Given a point

(
B1, A3, B3

)
∈ B−

A1
, the fiber over this point is defined as

π−1
(
B1, A3, B3

)
=

{
(B1, A2, B2, A3, B3) ∈ F−

A1

}
Note that since in F−

A1
the only relation involving

(
A2, B2

)
is the product of the commutators,

which we can express as [
A2, B2

]
=

[
A1, B1

]−1[
A3, B3

]−1

we may fix
(
B1, A3, B3

)
∈ B−

A1
and define the map

ψ : π−1
(
B1, A3, B3

)
−→

{
(A2, B2) ∈ SU(2)2 : [A2, B2] = [A1, B1]

−1[A3, B3]
−1

}
given by (

B1, A2, B2, A3, B3

)
7−→

(
A2, B2

)
Since we fixed our fiber, acting as the domain, by the uniqueness of inverses in SU(2) our map ψ is
well-defined and surjective. Moreover, by this uniqueness property and the fact that we fixed our
B1, A3 and B3 arguments, we must have that the map is injective, thus ψ is a bijection. Now we
observe that ψ is a restriction of the projection map

p : SU(2)5 −→ SU(2)2

which we know to be continuous as projections in the product topology are continuous, thus ψ is
continuous. Furthermore, ψ−1 is a restriction of the inclusion map

i : SU(2)2 −→ SU(2)5

which we know to be continuous as inclusions in the product topology are continuous, thus ψ−1 is
continuous. Therefore, ψ is a homeomorphism, that is

π−1
(
B1, A3, B3

) ∼= {
(A2, B2) ∈ SU(2)2 : [A2, B2] = [A1, B1]

−1[A3, B3]
−1

}
Importantly, observe that{

(A2, B2) ∈ SU(2)2 : [A2, B2] = [A1, B1]
−1[A3, B3]

−1
}

is just a fiber over the commutator map of SU(2) and thus is connected. Since we have shown
that an arbitrary fiber, π−1(B1, A3, B3), is connected, it follows that the fibers of our map π are
connected. Therefore, π is a continuous, surjective map with connected fibers from our total space
F−
A1

into our defined base space B−
A1
. Thus, we will now investigate the connectedness of this base

space B−
A1
. To do so consider the 2-nd power map of SU(2)

p2 : SU(2) −→ SU(2)

given by

Z 7−→ Z2

Let us examine the fiber over minus the identity

p−1
2 (−I) =

{
Y ∈ SU(2) : (Y )2 = −I

}
Note that for any Y ∈ p−1

2 (−I), Y is a matrix in SU(2), so it is diagonalizable and can be written
up to conjugation as

Y ∼
(
eiθ 0
0 e−iθ

)
, θ ∈ [0, π]
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Now this represents the conjugacy class determined by the eigenvalues (eiθ, e−iθ), which by our
condition on Y that (

Y
)2

= −I
must satisfy (

eiθ
)2

= −1 =⇒ ei2θ = −1 ⇐⇒ 2θ ≡ π (mod 2π)

Therefore, we have

θ =
π + 2πk

2
=

(2k + 1)π

2
, k ∈ Z

However, due to the equivalence under conjugation of θ ∼ −ϕ and θ ∼ θ + 2π in SU(2), we only
consider θ ∈ [0, π]. Thus,

0 ≤ (2k + 1)π

2
≤ π =⇒ k = 0

Hence our only possible eigenvalue pair is {
e

iπ
2 , e

−iπ
2

}
This corresponds to a distinct conjugacy class,

D− :=
{
V diag

(
e

iπ
2 , e

−iπ
2

)
V −1 : V ∈ SU(2)

}
Now, from our relation we know that [A3, B3]A1 lies in this fiber of the 2-nd power map, thus

[A3, B3]A1 ∈ D−

Recall that every conjugacy class of a non-central element in SU(2) is connected and homeomorphic
to S2. Therefore we know that

D− ∼= S2

Now note that B1 is not involved in the relation in B−
A1

and so it is unconstrained in SU(2). We do
have, however, that A3 and B3 are involved this relation, thus we will consider the map

Λ : SU(2)2 −→ SU(2)

given by (
A3, B3

)
7−→

[
A3, B3

]
A1

Observe that this is a continuous map as it is defined on a group operation, multiplication, which
is smooth in SU(2). The key observation is that by our relation on B−

A1
we have that(

B1, A3, B3

)
∈ B−

A1
⇐⇒ Λ

(
A3, B3

)
∈ p−1

2 (−I)

Therefore,

B−
A1

= SU(2)× Λ−1
(
p−1
2 (−I)

)
and hence we can express B−

A1
as

B−
A1

= SU(2)× Λ−1
(
D−)

Since Λ is continuous and the continuous preimage of a connected set is connected, it follows that

Λ−1
(
D−

k

)
is connected. Moreover, since SU(2) is connected and the finite product of a connected spaces is
connected, it follows that

SU(2)× Λ−1
(
D−)

is connected. Therefore, our set B−
A1

is connected. So we have shown that there is a continuous
surjection

π : F−
A1

−→ B−
A1
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with non-empty, connected fibers. Since every fiber is non-empty and connected, and the base
space B−

A1
is connected, it follows that F−

A1
is connected. Hence the entire fixed point stratum set

{A1} × F−
A1

is connected. □

Having classified the connectedness of each individual fixed point stratum set corresponding to the fibers of
A1 ∈ A2

− under µ, we now wish to consider the union so that we know the number of connected components of
the entire preimage.

Lemma 6. For

µ−1
(
A2

−
)
=

⋃
A1∈A2

−

{A1} × F−
A1

µ−1
(
A2

−
)
is connected

Proof. We begin by noting that by the previous lemma, we know that for each A1 ∈ A2
− our

corresponding fixed point stratum set

{A1} × F−
A1

:=
{
A1

}
×

{
(B1, A2, B2, A3, B3) ∈ SU(2)5 :

3∏
i=1

[
Ai, Bi

]
= I,

(
[A3, B3]A1

)2
= −I

}
is connected. Thus the remaining determination of the connectedness of our preiamge

µ−1
(
A2

−
)
=

⋃
A1∈A2

−

{A1} × F−
A1

depends on that of the parameter space, our characterization set A2
−. Now with

A2
− =

{
A1 ∈ SU(2) :

(
A1

)2
= −I

}
let us recall that this is merely the fiber of the identity under the 2-nd power map of SU(2). Thus
we will consider this fiber, first defining the 2-nd power map,

p2 : SU(2) −→ SU(2)

given by

Z 7−→ Z2

Let us examine the fiber over minus the identity

p−1
2 (−I) =

{
Y ∈ SU(2) : (Y )2 = −I

}
Note that for any Y ∈ p−1

2 (−I), Y is a matrix in SU(2), so it is diagonalizable and can be written
up to conjugation as

Y ∼
(
eiθ 0
0 e−iθ

)
, θ ∈ [0, π]

Now this represents the conjugacy class determined by the eigenvalues (eiθ, e−iθ), which by our
condition on Y that (

Y
)2

= −I
must satisfy (

eiθ
)2

= −1 =⇒ ei2θ = −1 ⇐⇒ 2θ ≡ π (mod 2π)

Therefore, we have

θ =
π + 2πk

2
=

(2k + 1)π

2
, k ∈ Z
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However, due to the equivalence under conjugation of θ ∼ −ϕ and θ ∼ θ + 2π in SU(2), we only
consider θ ∈ [0, π]. Thus,

0 ≤ (2k + 1)π

2
≤ π =⇒ k = 0

Hence our only possible eigenvalue pair is {
e

iπ
2 , e

−iπ
2

}
This corresponds to a distinct conjugacy class,

D− :=
{
V diag

(
e

iπ
2 , e

−iπ
2

)
V −1 : V ∈ SU(2)

}
Now, recall that every conjugacy class of a non-central element in SU(2) is connected and homeo-
morphic to S2. Therefore we know that

D− ∼= S2

Hence, A2
− is connected.

[INSERT] DR. DUNCAN: Implicit/Inverse Function Theorem Argument

□

We are now ready to state and prove our main result about the number of connected components of our fixed
point set.

Proposition 2. The fixed point set of the 2-nd power of Φ∗, has three connected components.

Proof. With

Fix
(
(Φ2)∗

)
=

{
(Ai, Bi) ∈ SU(2)6 :

3∏
i=1

[
Ai, Bi

]
= I,

(
[A3, B3]A1

)2
=

(
A1

)2
,
[
(A1)

2, A3

]
= I,

[
(A1)

2, B3

]
= I

}
we begin by recalling that

Fix
(
(Φ2)∗

)
= µ−1

(
A2

̸±
)
∪
(
(µ−1(I) ∪ µ−1(−I)) ∪ µ−1

(
A2

−
))

which is equivalent to

Fix
(
(Φ2)∗

)
=

⋃
A1∈A2

̸±

{A1} × F ̸±
A1

∪ {I} × F+
I ∪ {−I} × F+

−I ∪
⋃

A′′
1∈A2

−

{A′′
1} × F−

A′′
1

Now, by a previous lemma we know that the preimage over all A1 whose 2-nd power is non-central
in SU(2),

µ−1
(
A2

̸±
)
=

⋃
A1∈A2

̸±

{A1} × F ̸±
A1

has two connected components. By a previous lemma we know that the preimage over all A1 whose
2-nd power is equal to the identity,

µ−1
(
A2

+

)
= {I} × F+

I ∪ {−I} × F+
−I

has four connected components. Finally, by a previous lemma we know that the preimage over all
A1 whose 2-nd power is equal to minus the identity,

µ−1
(
A2

−
)
=

⋃
A′′

1∈A2
−

{A′′
1} × F−

A′′
1
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has one connected component. With this, we note that⋃
A1∈A2

̸±

{A1} × F ̸±
A1

∪ {I} × F+
I ∪ {−I} × F+

−I ∪
⋃

A′′
1∈A2

−

{A′′
1} × F−

A′′
1

is by construction a disjoint union, as necessarily our A1 arguments, which parametrize each indi-
vidual fixed point stratum set, cannot agree. Therefore, we get an upper bound for the number
of connected components of our fixed point set by adding the number of connected components
from each respective preimage, that is, we get that our fixed point set has at most seven connected
components However, this is just an upper bound and in fact we claim that the actual number of
connected components for our fixed point set is much lower. To refine this upper bound on the
number of connected components of our fixed point set we will leverage the fact that the closure of
a connected set is connected and that if two connected sets intersect in their closure, their union
is connected. Thus with this it suffices to show that the intersection of the closures of specific con-
nected components, arising from fixed point stratum sets, are non-empty and thus come together
to form larger connected components. First, though, we need to identify which of our connect
components could potentially intersect in their closures. To do so let us consider our respective
fixed point stratum sets for arbitrary, A1 ∈ A2

̸±, A
′
1 ∈ A2

+, and A
′′
1 ∈ A2

−, as these give rise to our
connected components. By definition we have

{A1} × F ̸±
A1

=
{
A1

}
×
{
(B1, A2, B2, A3, B3) ∈ SU(2)5 :

[
A1, B1

]
=

[
A2, B2

]−1
,
[
A3, B3

]
=

[
(A1)

2, A3

]
=

[
(A1)

2, B3

]
= I

}
{A′

1} × F+
A′

1
=

{
A′

1

}
×

{
(B1, A2, B2, A3, B3) ∈ SU(2)5 :

3∏
i=1

[
Ai, Bi

]
= I,

(
[A3, B3]A

′
1

)2
= I

}

{A′′
1} × F−

A′′
1
=

{
A′′

1

}
×

{
(B1, A2, B2, A3, B3) ∈ SU(2)5 :

3∏
i=1

[
Ai, Bi

]
= I,

(
[A3, B3]A

′′
1

)2
= −I

}
Now since SU(2) is a compact Lie group, the closure of a set corresponds to the inclusion of all
points that can be approximated by sequences in the set. Since the relations on that set are
continuous, any limit point will satisfy those relations as well. Thus if the closures of two subsets
of SU(2) intersect, the points in the intersection must satisfy the relations of both sets. With this
we observe that for each fixed point stratum set in the union

µ−1
(
A2

̸±
)
=

⋃
A1∈A2

̸±

{
A1

}
×F ̸±

A1

we have that A3 and B3 commute. Therefore, if we consider the closures of the corresponding two
connected components, were the closures of any of the other connected components arising from
our other two respective collections of fixed point stratum sets to intersect, they too must satisfy
this relation. By the proof of a previous lemma we know that

µ−1
(
A2

+

)
= {I} × F+

I ∪ {−I} × F+
−I

has two connected components which satisfy this commutation relation. Additionally, for

µ−1
(
A2

−
)
=

⋃
A′′

1∈A2
−

{A′′
1} × F−

A′′
1

it is connected and there are no restrictions on whether A3 and B3 should be aloud to commute, thus
it will satisfy this commutation relation. Note that it immediately follows that all relations for any

fixed point stratum set {A1} × F ̸±
A1

are satisfied, as by assumption, for each respective fixed point

stratum set in the latter preimages, we have by construction that
(
A′

1

)2
= I and

(
A′′

1

)2
= −I, thus

trivially commute with A3 and B3. It is important to note that these specific fixed point stratum
sets decorate the gaps in between the connected components of µ−1

(
A2

̸±
)
in correspondence to their

respective open intervals along [0, π] We claim that all of the special connected components of our
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fixed point stratum sets, that is the ones in which A3 and B3 commute, from our two respective
preimages

µ−1
(
A2

+

)
= {I} × F+

I ∪ {−I} × F+
−I and µ−1

(
A2

−
)
=

⋃
A′′

1∈A2
−

{A′′
1} × F−

A′′
1

merge all of the connected components from our third preimage, to form one large connected
component. This claim may be verified through the previously mentioned intersection of the
closure argument. We will look at one case of this a note that we may repeat the argument to
sew together all of our target connected components. For this case, fix A1 ∈ SU(2). Then by

construction if
(
A1

)2
= I we have that µ−1

(
A1

) ∼= {A1} × F+
A1
. Define the path

A1(t) :
[
0, 1

]
−→ µ−1

(
SU(2)

)
where

(
A1(0)

)2
= I and

(
A1(t)

)2 ̸= ±I for t ̸= 0. Now observe that

lim
t→0

µ−1
(
A1(t)

)
⊆ {A1(0)} × F+

A1

Thus the intersection of the closures of the two sets is non-empty and so their union is connected.
As we mentioned this is true for all of our special connected components of our fixed point stratum
sets, thus we can connect our three special connected components in µ−1

(
A2

±
)
and two connected

components of µ−1
(
A2

̸±
)
, to form one large connected component. This however is the extent of

this merging of connected components that we see from the general fixed point set. This is a result
of the following. Suppose that for some fixed A′

1 ∈ A2
+, and A

′′
1 ∈ A2

− we had that

{A′
1} × F+

A′
1
∩ {A′′

1} × F−
A′′

1
̸= ∅

that is the closures of at least one of the connected components from each of the respective connected
components from the fixed point stratum sets intersected. Then there would exist an element(

Ã1, B̃1, Ã2, B̃2, Ã3, B̃3

)
∈ {A′

1} × F+
A′

1
∩ {A′′

1} × F−
A′′

1

such that Ã1, B̃1, Ã2, B̃2, Ã3 and B̃3 satisfy the relations of each respective set, that is

3∏
i=1

[
Ãi, B̃i

]
= I

(
[Ã3, B̃3]Ã1

)2
= I(

[Ã3, B̃3]Ã1

)2
= −I

However, in SU(2) the 2-nd power of a matrix cannot simultaneously be equal to both the identity
and minus the identity. Therefore, there cannot exists an element(

Ã1, B̃1, Ã2, B̃2, Ã3, B̃3

)
∈ {A′

1} × F+
A′

1
∩ {A′′

1} × F−
A′′

1

and so we are unable to form larger connected components from any of the connected components of
each respective fixed point stratum set without the additional components from our other preimage.
Therefore the number of connected components in our fixed point set is three and so we are
done. □

3. Computing Powers of Φ, (n = 3)
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3.

• Tγ1◦T−1
γ2 : α1 7→ [α3, β3]α1[α3, β3]

−1

α2 7→ α2

α3 7→ [α3, β3]α1α3α
−1
1 [α3, β3]

−1

β1 7→ β1[α3, β3]
−1

β2 7→ β2
β3 7→ [α3, β3]α1β3α

−1
1 [α3, β3]

−1

•
(
Tγ1 ◦ T−1

γ2

)2
: α1 7→ [α3, β3]α1[α3, β3]α1[α3, β3]

−1α−1
1 [α3, β3]

−1

β1 7→ β1α1[α3, β3]
−1α−1

1 [α3, β3]
−1

α2 7→ α2

β2 7→ β2
α3 7→ [α3, β3]α1[α3, β3]α1α3α

−1
1 [α3, β3]

−1α−1
1 [α3, β3]

−1

β3 7→ [α3, β3]α1[α3, β3]α1β3α
−1
1 [α3, β3]

−1α−1
1 [α3, β3]

−1

•
(
Tγ1 ◦ T−1

γ2

)3
: α1 7→ [α3, β3]α1[α3, β3]α1[α3, β3]α1[α3, β3]

−1α−1
1 [α3, β3]

−1α−1
1 [α3, β3]

−1

β1 7→ β1α1α1[α3, β3]
−1α−1

1 [α3, β3]
−1α−1

1 [α3, β3]
−1

α2 7→ α2

β2 7→ β2
α3 7→ [α3, β3]α1[α3, β3]α1[α3, β3]α1α3α

−1
1 [α3, β3]

−1α−1
1 [α3, β3]

−1α−1
1 [α3, β3]

−1

β3 7→ [α3, β3]α1[α3, β3]α1[α3, β3]α1β3α
−1
1 [α3, β3]

−1α−1
1 [α3, β3]

−1α−1
1 [α3, β3]

−1

3.1. Fixed Point Equations for
(
(Tγ1 ◦ T−1

γ2 )3
)∗
.

3.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

• On R(Σ, G) : A1 7→ [A3, B3]A1[A3, B3]A1[A3, B3]A1[A3, B3]
−1A−1

1 [A3, B3]
−1A−1

1 [A3, B3]
−1

B1 7→ B1A1A1[A3, B3]
−1A−1

1 [A3, B3]
−1A−1

1 [A3, B3]
−1

A2 7→ A2

B2 7→ B2

A3 7→ [A3, B3]A1[A3, B3]A1[A3, B3]A1A3A
−1
1 [A3, B3]

−1A−1
1 [A3, B3]

−1A−1
1 [A3, B3]

−1

B3 7→ [A3, B3]A1[A3, B3]A1[A3, B3]A1B3A
−1
1 [A3, B3]

−1A−1
1 [A3, B3]

−1A−1
1 [A3, B3]

−1

• On R(Σ, G)/G : T−1A1T 7→ [A3, B3]A1[A3, B3]A1[A3, B3]A1[A3, B3]
−1A−1

1 [A3, B3]
−1A−1

1 [A3, B3]
−1

T−1B1T 7→ B1A1A1[A3, B3]
−1A−1

1 [A3, B3]
−1A−1

1 [A3, B3]
−1

T−1A2T 7→ A2

T−1B2T 7→ B2

T−1A3T 7→ [A3, B3]A1[A3, B3]A1[A3, B3]A1A3A
−1
1 [A3, B3]

−1A−1
1 [A3, B3]

−1A−1
1 [A3, B3]

−1

T−1B3T 7→ [A3, B3]A1[A3, B3]A1[A3, B3]A1B3A
−1
1 [A3, B3]

−1A−1
1 [A3, B3]

−1A−1
1 [A3, B3]

−1

3.2. Computing Φ3 = Tγ1 ◦ T−1
γ2 ◦ Tγ1 ◦ T−1

γ2 ◦ Tγ1 ◦ T−1
γ2 .

3.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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• Φ3(α1) :

Φ2(α1) = [α3, β3]α1[α3, β3]α1[α3, β3]
−1α−1

1 [α3, β3]
−1

Φ
(
Φ2(α1)

)
= Φ([α3, β3]α1[α3, β3]α1[α3, β3]

−1α−1
1 [α3, β3]

−1)

= Φ([α3, β3])Φ(α1)Φ([α3, β3])Φ(α1)Φ([α3, β3]
−1)Φ(α−1

1 )Φ([α3, β3]
−1)

= Φ([α3, β3])Φ(α1)Φ([α3, β3])Φ(α1)
(
Φ([α3, β3])

)−1(
Φ(α1)

)−1(
Φ([α3, β3])

)−1

= Φ(α3β3α
−1
3 β−1

3 )Φ(α1)Φ(α3β3α
−1
3 β−1

3 )Φ(α1)
(
Φ(α3β3α

−1
3 β−1

3 )
)−1(

Φ(α1)
)−1(

Φ(α3β3α
−1
3 β−1

3 )
)−1

= Φ(α3)Φ(β3)Φ(α
−1
3 )Φ(β−1

3 )Φ(α1)Φ(α3)Φ(β3)Φ(α
−1
3 )Φ(β−1

3 )Φ(α1)
(
Φ(α3)Φ(β3)Φ(α

−1
3 )Φ(β−1

3 )
)−1(

Φ(α1)
)−1(

Φ(α3)Φ(β3)Φ(α
−1
3 )Φ(β−1

3 )
)−1

= Φ(α3)Φ(β3)
(
Φ(α3)

)−1(
Φ(β3)

)−1
Φ(α1)Φ(α3)Φ(β3)

(
Φ(α3)

)−1(
Φ(β3)

)−1
Φ(α1)

(
Φ(α3)Φ(β3)(

Φ(α3)
)−1(

Φ(β3)
)−1

)
)−1(

Φ(α1)
)−1(

Φ(α3)Φ(β3)
(
Φ(α3)

)−1(
Φ(β3)

)−1)−1

= [α3, β3]α1α3α
−1
1 [α3, β3]

−1[α3, β3]α1β3α
−1
1 [α3, β3]

−1[α3, β3]α1α
−1
3 α−1

1 [α3, β3]
−1[α3, β3]α1β

−1
3

α−1
1 [α3, β3]

−1[α3, β3]α1[α3, β3]
−1[α3, β3]α1α3α

−1
1 [α3, β3]

−1[α3, β3]α1β3α
−1
1 [α3, β3]

−1[α3, β3]α1α
−1
3

α−1
1 [α3, β3]

−1[α3, β3]α1β
−1
3 α−1

1 [α3, β3]
−1[α3, β3]α1[α3, β3]

−1[α3, β3]α1β3α
−1
1 [α3, β3]

−1[α3, β3]α1α3

α−1
1 [α3, β3]

−1[α3, β3]α1β
−1
3 α−1

1 [α3, β3]
−1[α3, β3]α1α

−1
3 α−1

1 [α3, β3]
−1[α3, β3]α

−1
1 [α3, β3]

−1[α3, β3]α1β3

α−1
1 [α3, β3]

−1[α3, β3]α1α3α
−1
1 [α3, β3]

−1[α3, β3]α1β
−1
3 α−1

1 [α3, β3]
−1[α3, β3]α1α

−1
3 α−1

1 [α3, β3]
−1

= [α3, β3]α1α3β3α
−1
3 β−1

3 α1α3β3α
−1
3 β−1

3 α1β3α3β
−1
3 α−1

3 α−1
1 β3α3β

−1
3 α−1

3 α−1
1 [α3, β3]

−1

= [α3, β3]α1[α3, β3]α1[α3, β3]α1[β3, α3]α
−1
1 [β3, α3]α

−1
1 [α3, β3]

−1

= [α3, β3]α1[α3, β3]α1[α3, β3]α1[α3, β3]
−1α−1

1 [α3, β3]
−1α−1

1 [α3, β3]
−1

Φ3(α1) = [α3, β3]α1[α3, β3]α1[α3, β3]α1[α3, β3]
−1α−1

1 [α3, β3]
−1α−1

1 [α3, β3]
−1

• Φ3(β1) :

Φ2(β1) = β1α1[α3, β3]
−1α−1

1 [α3, β3]
−1

Φ
(
Φ2(β1)

)
= Φ(β1α1[α3, β3]

−1α−1
1 [α3, β3]

−1)

= Φ(β1)Φ(α1)Φ([α3, β3]
−1)Φ(α−1

1 )Φ([α3, β3]
−1)

= Φ(β1)Φ(α1)
(
Φ([α3, β3])

)−1(
Φ(α1)

)−1(
Φ([α3, β3])

)−1

= Φ(β1)Φ(α1)
(
Φ(α3β3α

−1
3 β−1

3 )
)−1(

Φ(α1)
)−1(

Φ(α3β3α
−1
3 β−1

3 )
)−1

= Φ(β1)Φ(α1)
(
Φ(α3)Φ(β3)Φ(α

−1
3 )Φ(β−1

3 )
)−1(

Φ(α1)
)−1(

Φ(α3)Φ(β3)Φ(α
−1
3 )Φ(β−1

3 )
)−1

= Φ(β1)Φ(α1)
(
Φ(α3)Φ(β3)

(
Φ(α3)

)−1(
Φ(β3)

)−1)−1(
Φ(α1)

)−1(
Φ(α3)Φ(β3)

(
Φ(α3)

)−1(
Φ(β3)

)−1)−1

= β1[α3, β3]
−1[α3, β3]α1[α3, β3]

−1[α3, β3]α1β3α
−1
1 [α3, β3]

−1[α3, β3]α1α3α
−1
1 [α3, β3]

−1[α3, β3]α1β
−1
3

α−1
1 [α3, β3]

−1[α3, β3]α1α
−1
3 α−1

1 [α3, β3]
−1[α3, β3]α

−1
1 [α3, β3]

−1[α3, β3]α1β3α
−1
1 [α3, β3]

−1[α3, β3]α1α3

α−1
1 [α3, β3]

−1[α3, β3]α1β
−1
3 α−1

1 [α3, β3]
−1[α3, β3]α1α

−1
3 α−1

1 [α3, β3]
−1

= β1α1α1β3α3β
−1
3 α−1

3 α−1
1 β3α3β

−1
3 α−1

3 α−1
1 [α3, β3]

−1

= β1α1α1[β3, α3]α
−1
1 [β3, α3]α

−1
1 [α3, β3]

−1

= β1α1α1[α3, β3]
−1α−1

1 [α3, β3]
−1α−1

1 [α3, β3]
−1

Φ3(β1) = β1α1α1[α3, β3]
−1α−1

1 [α3, β3]
−1α−1

1 [α3, β3]
−1
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• Φ3(α2) :

Φ2(α2) = α2

Φ
(
Φ2(α2)

)
= Φ(α2)

= α2

Φ3(α2) = α2

• Φ3(β2) :

Φ2(β2) = β2

Φ
(
Φ2(β2)

)
= Φ(β2)

= β2

Φ3(β2) = β2

• Φ3(α3) :

Φ2(α3) = [α3, β3]α1[α3, β3]α1α3α
−1
1 [α3, β3]

−1α−1
1 [α3, β3]

−1

Φ
(
Φ2(α3)

)
= Φ([α3, β3]α1[α3, β3]α1α3α

−1
1 [α3, β3]

−1α−1
1 [α3, β3]

−1)

= Φ([α3, β3])Φ(α1)Φ([α3, β3])Φ(α1)Φ(α3)Φ(α
−1
1 )Φ([α3, β3]

−1)Φ(α−1
1 )Φ([α3, β3]

−1)

= Φ([α3, β3])Φ(α1)Φ([α3, β3])Φ(α1)Φ(α3)
(
Φ(α1)

)−1(
Φ([α3, β3])

)−1(
Φ(α1)

)−1(
Φ([α3, β3])

)−1

= Φ(α3β3α
−1
3 β−1

3 )Φ(α1)Φ(α3β3α
−1
3 β−1

3 )Φ(α1)Φ(α3)
(
Φ(α1)

)−1(
Φ(α3β3α

−1
3 β−1

3 )
)−1(

Φ(α1)
)−1(

Φ(α3β3α
−1
3 β−1

3 )
)−1

= Φ(α3)Φ(β3)Φ(α
−1
3 )Φ(β−1

3 )Φ(α1)Φ(α3)Φ(β3)Φ(α
−1
3 )Φ(β−1

3 )Φ(α1)Φ(α3)
(
Φ(α1)

)−1(
Φ(α3)Φ(β3)Φ(α

−1
3 )Φ(β−1

3 )
)−1(

Φ(α1)
)−1(

Φ(α3)Φ(β3)Φ(α
−1
3 )Φ(β−1

3 )
)−1

= Φ(α3)Φ(β3)
(
Φ(α3)

)−1(
Φ(β3)

)−1
Φ(α1)Φ(α3)Φ(β3)

(
Φ(α3)

)−1(
Φ(β3)

)−1
Φ(α1)Φ(α3)

(
Φ(α1)

)−1(
Φ(α3)Φ(β3)

(
Φ(α3)

)−1(
Φ(β3)

)−1)−1(
Φ(α1)

)−1(
Φ(α3)Φ(β3)

(
Φ(α3)

)−1(
Φ(β3)

)−1)−1

= [α3, β3]α1α3α
−1
1 [α3, β3]

−1[α3, β3]α1β3α
−1
1 [α3, β3]

−1[α3, β3]α1α
−1
3 α−1

1 [α3, β3]
−1[α3, β3]α1β

−1
3

α−1
1 [α3, β3]

−1[α3, β3]α1[α3, β3]
−1[α3, β3]α1α3α

−1
1 [α3, β3]

−1[α3, β3]α1β3α
−1
1 [α3, β3]

−1[α3, β3]α1α
−1
3

α−1
1 [α3, β3]

−1[α3, β3]α1β
−1
3 α−1

1 [α3, β3]
−1[α3, β3]α1[α3, β3]

−1[α3, β3]α1α3α
−1
1

[α3, β3]
−1[α3, β3]α

−1
1 [α3, β3]

−1[α3, β3]α1β3α
−1
1 [α3, β3]

−1[α3, β3]α1α3α
−1
1 [α3, β3]

−1[α3, β3]α1β
−1
3

α−1
1 [α3, β3]

−1[α3, β3]α1α
−1
3 α−1

1 [α3, β3]
−1[α3, β3]α

−1
1 [α3, β3]

−1[α3, β3]α1β3α
−1
1 [α3, β3]

−1[α3, β3]α1α3

α−1
1 [α3, β3]

−1[α3, β3]α1β
−1
3 α−1

1 [α3, β3]
−1[α3, β3]α1α

−1
3 α−1

1 [α3, β3]
−1

= [α3, β3]α1α3β3α
−1
3 β−1

3 α1α3β3α
−1
3 β−1

3 α1α3α
−1
1 β3α3β

−1
3 α−1

3 α−1
1 β3α3β

−1
3 α−1

3 α−1
1 [α3, β3]

−1

= [α3, β3]α1[α3, β3]α1[α3, β3]α1α3α
−1
1 [β3, α3]α

−1
1 [β3, α3]α

−1
1 [α3, β3]

−1

= [α3, β3]α1[α3, β3]α1[α3, β3]α1α3α
−1
1 [α3, β3]

−1α−1
1 [α3, β3]

−1α−1
1 [α3, β3]

−1

Φ3(α3) = [α3, β3]α1[α3, β3]α1[α3, β3]α1α3α
−1
1 [α3, β3]

−1α−1
1 [α3, β3]

−1α−1
1 [α3, β3]

−1
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• Φ3(β3) :

Φ2(β3) = [α3, β3]α1[α3, β3]α1β3α
−1
1 [α3, β3]

−1α−1
1 [α3, β3]

−1

Φ
(
Φ2(α3)

)
= Φ([α3, β3]α1[α3, β3]α1β3α

−1
1 [α3, β3]

−1α−1
1 [α3, β3]

−1)

= Φ([α3, β3])Φ(α1)Φ([α3, β3])Φ(α1)Φ(β3)Φ(α
−1
1 )Φ([α3, β3]

−1)Φ(α−1
1 )Φ([α3, β3]

−1)

= Φ([α3, β3])Φ(α1)Φ([α3, β3])Φ(α1)Φ(β3)
(
Φ(α1)

)−1(
Φ([α3, β3])

)−1(
Φ(α1)

)−1(
Φ([α3, β3])

)−1

= Φ(α3β3α
−1
3 β−1

3 )Φ(α1)Φ(α3β3α
−1
3 β−1

3 )Φ(α1)Φ(β3)
(
Φ(α1)

)−1(
Φ(α3β3α

−1
3 β−1

3 )
)−1(

Φ(α1)
)−1(

Φ(α3β3α
−1
3 β−1

3 )
)−1

= Φ(α3)Φ(β3)Φ(α
−1
3 )Φ(β−1

3 )Φ(α1)Φ(α3)Φ(β3)Φ(α
−1
3 )Φ(β−1

3 )Φ(α1)Φ(β3)
(
Φ(α1)

)−1(
Φ(α3)Φ(β3)Φ(α

−1
3 )Φ(β−1

3 )
)−1(

Φ(α1)
)−1(

Φ(α3)Φ(β3)Φ(α
−1
3 )Φ(β−1

3 )
)−1

= Φ(α3)Φ(β3)
(
Φ(α3)

)−1(
Φ(β3)

)−1
Φ(α1)Φ(α3)Φ(β3)

(
Φ(α3)

)−1(
Φ(β3)

)−1
Φ(α1)Φ(β3)

(
Φ(α1)

)−1(
Φ(α3)Φ(β3)

(
Φ(α3)

)−1(
Φ(β3)

)−1)−1(
Φ(α1)

)−1(
Φ(α3)Φ(β3)

(
Φ(α3)

)−1(
Φ(β3)

)−1)−1

= [α3, β3]α1α3α
−1
1 [α3, β3]

−1[α3, β3]α1β3α
−1
1 [α3, β3]

−1[α3, β3]α1α
−1
3 α−1

1 [α3, β3]
−1[α3, β3]α1β

−1
3

α−1
1 [α3, β3]

−1[α3, β3]α1[α3, β3]
−1[α3, β3]α1α3α

−1
1 [α3, β3]

−1[α3, β3]α1β3α
−1
1 [α3, β3]

−1[α3, β3]α1α
−1
3

α−1
1 [α3, β3]

−1[α3, β3]α1β
−1
3 α−1

1 [α3, β3]
−1[α3, β3]α1[α3, β3]

−1[α3, β3]α1β3α
−1
1

[α3, β3]
−1[α3, β3]α

−1
1 [α3, β3]

−1[α3, β3]α1β3α
−1
1 [α3, β3]

−1[α3, β3]α1α3α
−1
1 [α3, β3]

−1[α3, β3]α1β
−1
3

α−1
1 [α3, β3]

−1[α3, β3]α1α
−1
3 α−1

1 [α3, β3]
−1[α3, β3]α

−1
1 [α3, β3]

−1[α3, β3]α1β3α
−1
1 [α3, β3]

−1[α3, β3]α1α3

α−1
1 [α3, β3]

−1[α3, β3]α1β
−1
3 α−1

1 [α3, β3]
−1[α3, β3]α1α

−1
3 α−1

1 [α3, β3]
−1

= [α3, β3]α1α3β3α
−1
3 β−1

3 α1α3β3α
−1
3 β−1

3 α1β3α
−1
1 β3α3β

−1
3 α−1

3 α−1
1 β3α3β

−1
3 α−1

3 α−1
1 [α3, β3]

−1

= [α3, β3]α1[α3, β3]α1[α3, β3]α1β3α
−1
1 [β3, α3]α

−1
1 [β3, α3]α

−1
1 [α3, β3]

−1

= [α3, β3]α1[α3, β3]α1[α3, β3]α1β3α
−1
1 [α3, β3]

−1α−1
1 [α3, β3]

−1α−1
1 [α3, β3]

−1

Φ3(β3) = [α3, β3]α1[α3, β3]α1[α3, β3]α1β3α
−1
1 [α3, β3]

−1α−1
1 [α3, β3]

−1α−1
1 [α3, β3]

−1

3.3. Checking Relation.

3.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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• Φ3 := Tγ1 ◦ T−1
γ2 ◦ Tγ1 ◦ T−1

γ2 ◦ Tγ1 ◦ T−1
γ2 :

(i)
[
Φ3(α1),Φ

3(β1)
][
Φ3(α2),Φ

3(β2)
][
Φ3(α1),Φ

3(β1)
]

(ii)
[
[α3, β3]α1[α3, β3]α1[α3, β3]α1[α3, β3]

−1α−1
1 [α3, β3]

−1α−1
1 [α3, β3]

−1, β1α1α1[α3, β3]
−1α−1

1 [α3, β3]
−1α−1

1 [α3, β3]
−1

][
α2, β2

]
[α3, β3]α1[α3, β3]α1[α3, β3]α1

[
α3, β3

]
α−1
1 [α3, β3]

−1α−1
1 [α3, β3]

−1α−1
1 [α3, β3]

−1

(iii) [α3, β3]α1[α3, β3]α1[α3, β3]α1[α3, β3]
−1α−1

1 [α3, β3]
−1α−1

1 [α3, β3]
−1β1α1α1[α3, β3]

−1α−1
1 [α3, β3]

−1α−1
1 [α3, β3]

−1

[α3, β3]α1[α3, β3]α1[α3, β3]α
−1
1 [α3, β3]

−1α−1
1 [α3, β3]

−1α−1
1 [α3, β3]

−1[α3, β3]α1[α3, β3]α1[α3, β3]α
−1
1 α−1

1 β−1
1[

α2, β2
][
α3, β3

]
α1[α3, β3]α1[α3, β3]α1[α3, β3]α

−1
1 [α3, β3]

−1α−1
1 [α3, β3]

−1α−1
1 [α3, β3]

−1

(iv) [α3, β3]α1[α3, β3]α1[α3, β3]α1[α3, β3]
−1α−1

1 [α3, β3]
−1α−1

1 [α3, β3]
−1α−1

1 α1β1α
−1
1 β−1

1[
α2, β2

][
α3, β3

]
α1[α3, β3]α1[α3, β3]α1[α3, β3]α

−1
1 [α3, β3]

−1α−1
1 [α3, β3]

−1α−1
1 [α3, β3]

−1

(v) [α3, β3]α1[α3, β3]α1[α3, β3]α1[α3, β3]
−1α−1

1 [α3, β3]
−1α−1

1 [α3, β3]
−1α−1

1 α1β1α
−1
1 β−1

1[
α2, β2

][
α3, β3

]
α1[α3, β3]α1[α3, β3]α1[α3, β3]α

−1
1 [α3, β3]

−1α−1
1 [α3, β3]

−1α−1
1 [α3, β3]

−1

(vi) [α3, β3]α1[α3, β3]α1[α3, β3]α1[α3, β3]
−1α−1

1 [α3, β3]
−1α−1

1 [α3, β3]
−1α−1

1

[
α1, β1

][
α2, β2

][
α3, β3

]
α1[α3, β3]α1[α3, β3]α1[α3, β3]α

−1
1 [α3, β3]

−1α−1
1 [α3, β3]

−1α−1
1 [α3, β3]

−1

(vii) [α3, β3]α1[α3, β3]α1[α3, β3]α1[α3, β3]
−1α−1

1 [α3, β3]
−1α−1

1 [α3, β3]
−1α−1

1

α1[α3, β3]α1[α3, β3]α1[α3, β3]α
−1
1 [α3, β3]

−1α−1
1 [α3, β3]

−1α−1
1 [α3, β3]

−1

(viii) 1

4. General Powers of Φ

4.

• Tγ1◦T−1
γ2 : α1 7→ [α3, β3]α1[α3, β3]

−1

α2 7→ α2

α3 7→ [α3, β3]α1α3α
−1
1 [α3, β3]

−1

β1 7→ β1[α3, β3]
−1

β2 7→ β2
β3 7→ [α3, β3]α1β3α

−1
1 [α3, β3]

−1

•
(
Tγ1 ◦ T−1

γ2

)2
: α1 7→ [α3, β3]α1[α3, β3]α1[α3, β3]

−1α−1
1 [α3, β3]

−1

β1 7→ β1α1[α3, β3]
−1α−1

1 [α3, β3]
−1

α2 7→ α2

β2 7→ β2
α3 7→ [α3, β3]α1[α3, β3]α1α3α

−1
1 [α3, β3]

−1α−1
1 [α3, β3]

−1

β3 7→ [α3, β3]α1[α3, β3]α1β3α
−1
1 [α3, β3]

−1α−1
1 [α3, β3]

−1

•
(
Tγ1 ◦ T−1

γ2

)3
: α1 7→ [α3, β3]α1[α3, β3]α1[α3, β3]α1[α3, β3]

−1α−1
1 [α3, β3]

−1α−1
1 [α3, β3]

−1

β1 7→ β1α1α1[α3, β3]
−1α−1

1 [α3, β3]
−1α−1

1 [α3, β3]
−1

α2 7→ α2

β2 7→ β2
α3 7→ [α3, β3]α1[α3, β3]α1[α3, β3]α1α3α

−1
1 [α3, β3]

−1α−1
1 [α3, β3]

−1α−1
1 [α3, β3]

−1

β3 7→ [α3, β3]α1[α3, β3]α1[α3, β3]α1β3α
−1
1 [α3, β3]

−1α−1
1 [α3, β3]

−1α−1
1 [α3, β3]

−1
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•
(
Tγ1 ◦ T−1

γ2

)n
: α1 7→

(
[α3, β3]α1

)n
α1

(
α−1
1 [α3, β3]

−1
)n

β1 7→ β1
(
α1

)n(
α−1
1 [α3, β3]

−1
)n

α2 7→ α2

β2 7→ β2
α3 7→

(
[α3, β3]α1

)n
α3

(
α−1
1 [α3, β3]

−1
)n

β3 7→
(
[α3, β3]α1

)n
β3

(
α−1
1 [α3, β3]

−1
)n

4.1. Fixed Point Equations for
(
(Tγ1 ◦ T−1

γ2 )n
)∗
.

4.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

• On R(Σ, G) : A1 7→
(
[A3, B3]A1

)n
A1

(
A−1

1 [A3, B3]
−1

)n
B1 7→ B1

(
A1

)n(
A−1

1 [A3, B3]
−1

)n
A2 7→ A2

B2 7→ B2

A3 7→
(
[A3, B3]A1

)n
A3

(
A−1

1 [A3, B3]
−1

)n
B3 7→

(
[A3, B3]A1

)n
B3

(
A−1

1 [A3, B3]
−1

)n
• On R(Σ, G)/G : T−1A1T 7→

(
[A3, B3]A1

)n
A1

(
A−1

1 [A3, B3]
−1

)n
T−1B1T 7→ B1

(
A1

)n(
A−1

1 [A3, B3]
−1

)n
T−1A2T 7→ A2

T−1B2T 7→ B2

T−1A3T 7→
(
[A3, B3]A1

)n
A3

(
A−1

1 [A3, B3]
−1

)n
T−1B3T 7→

(
[A3, B3]A1

)n
B3

(
A−1

1 [A3, B3]
−1

)n
4.2. Proving General Φn Equations.

4.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Lemma 7. Φ
(
([α3, β3]α1)

n
)
=

(
[α3, β3]α1

)n
for every n ∈ Z \ {0}

Proof. Fix n ∈ Z \ {0}. We begin by noting that since Φ is an automorphism it follows that

Φ
(
([α3, β3]α1)

n
)
=

(
Φ([α3, β3]α1)

)n
=

(
Φ([α3, β3])Φ(α1)

)n
and thus it suffices to show that

Φ([α3, β3])Φ(α1) = [α3, β3]α1

We will proceed with manual computations.

Φ([α3, β3])Φ(α1) = Φ(α3β3α
−1
3 β−1

3 )Φ(α1)

= Φ(α3)Φ(β3)Φ(α
−1
3 )Φ(β−1

3 )Φ(α1)

= Φ(α3)Φ(β3)
(
Φ(α3)

)−1(
Φ(β3)

)−1
Φ(α1)

= [α3, β3]α1α3α
−1
1 [α3, β3]

−1[α3, β3]α1β3α
−1
1 [α3, β3]

−1[α3, β3]α1α
−1
3

α−1
1 [α3, β3]

−1[α3, β3]α1β
−1
3 α−1

1 [α3, β3]
−1[α3, β3]α1[α3, β3]

−1

= [α3, β3]α1α3β3α
−1
3 β−1

3 [α3, β3]
−1

= [α3, β3]α1[α3, β3][α3, β3]
−1

= [α3, β3]α1
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Therefore

Φ([α3, β3])Φ(α1) = [α3, β3]α1

and so we are done. □

Lemma 8. Φ
(
(α−1

1 [α3, β3]
−1)n

)
=

(
α−1
1 [α3, β3]

−1
)n

for every n ∈ Z \ {0}

Proof. Fix n ∈ Z \ {0}. We begin by noting that since Φ is an automorphism it follows that

Φ
(
(α−1

1 [α3, β3]
−1)n

)
=

(
Φ(α−1

1 [α3, β3]
−1)

)n
=

(
Φ(α−1

1 )Φ([α3, β3]
−1)

)n
and thus it suffices to show that

Φ(α−1
1 )Φ([α3, β3]

−1) = α−1
1 [α3, β3]

−1

We will proceed with manual computations.

Φ(α−1
1 )Φ([α3, β3]

−1) = Φ(α−1
1 )Φ(β3α3β

−1
3 α−1

3 )

= Φ(α−1
1 )Φ(β3)Φ(α3)Φ(β

−1
3 )Φ(α−1

3 )

=
(
Φ(α1)

)−1
Φ(β3)Φ(α3)

(
Φ(β3)

)−1(
Φ(α3)

)−1

= [α3, β3]α
−1
1 [α3, β3]

−1[α3, β3]α1β3α
−1
1 [α3, β3]

−1[α3, β3]α1α3

α−1
1 [α3, β3]

−1[α3, β3]α1β
−1
3 α−1

1 [α3, β3]
−1[α3, β3]α1α

−1
3 α−1

1 [α3, β3]
−1

= [α3, β3]β3α3β
−1
3 α−1

3 α−1
1 [α3, β3]

−1

= [α3, β3][β3, α3]α
−1
1 [α3, β3]

−1

= [α3, β3][α3, β3]
−1α−1

1 [α3, β3]
−1

= α−1
1 [α3, β3]

−1

Therefore

Φ(α−1
1 )Φ([α3, β3]

−1) = α−1
1 [α3, β3]

−1

and so we are done. □

Now we will prove that our general equations hold:

• Φn(α1) =
(
[α3, β3]α1

)n
α1

(
α−1
1 [α3, β3]

−1
)n

Proof. We will proceed by induction. First we note that for n = 1 we have(
[α3, β3]α1

)
α1

(
α−1
1 [α3, β3]

−1
)
= [α3, β3]α1α1α

−1
1 [α3, β3]

−1 = [α3, β3]α1[α3, β3]
−1

which is our Φ(α1) and thus our base case holds. Next, suppose that

Φn(α1) =
(
[α3, β3]α1

)n
α1

(
α−1
1 [α3, β3]

−1
)n

for some n ∈ Z>0. We wish to show that for n+ 1

Φn+1(α1) =
(
[α3, β3]α1

)n+1
α1

(
α−1
1 [α3, β3]

−1
)n+1

We begin by noting that

Φn+1(α1) = Φ
(
Φn(α1)

)
thus by our induction hypothesis we have

Φ
(
Φn(α1)

)
= Φ

(
([α3, β3]α1)

nα1(α
−1
1 [α3, β3]

−1)n
)

= Φ
(
([α3, β3]α1)

n
)
Φ(α1)Φ

(
(α−1

1 [α3, β3]
−1)n

)
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Now by our previous lemmas this becomes

Φn+1(α1) = Φ
(
([α3, β3]α1)

n
)
Φ(α1)Φ

(
(α−1

1 [α3, β3]
−1)n

)
=

(
[α3, β3]α1

)n
[α3, β3]α1[α3, β3]

−1
(
α−1
1 [α3, β3]

−1
)n

=
(
[α3, β3]α1

)n+1
α1α

−1
1 [α3, β3]

−1
(
α−1
1 [α3, β3]

−1
)n

=
(
[α3, β3]α1

)n+1
α1

(
α−1
1 [α3, β3]

−1
)n+1

and so we are done. □

• Φn(β1) = β1
(
α1

)n(
α−1
1 [α3, β3]

−1
)n

Proof. We will proceed by induction. First we note that for n = 1 we have

β1
(
α1

)(
α−1
1 [α3, β3]

−1
)
= β1α1α

−1
1 [α3, β3]

−1 = β3[α3, β3]
−1

which is our Φ(α1) and thus our base case holds. Next, suppose that

Φn(β1) = β1
(
α1

)n(
α−1
1 [α3, β3]

−1
)n

for some n ∈ Z>0. We wish to show that for n+ 1

Φn+1(β1) = β1
(
α1

)n+1(
α−1
1 [α3, β3]

−1
)n+1

We begin by noting that
Φn+1(β1) = Φ

(
Φn(β1)

)
thus by our induction hypothesis we have

Φ
(
Φn(β1)

)
= Φ

(
β1(α1)

n(α−1
1 [α3, β3]

−1)n
)

= Φ(β1)Φ((α1)
n)Φ((α−1

1 [α3, β3]
−1)n)

= Φ(β1)
(
Φ(α1)

)n
Φ((α−1

1 [α3, β3]
−1)n)

= β1[α3, β3]
−1([α3, β3]α1[α3, β3]

−1)n(α−1
1 [α3, β3]

−1)n

= β1[α3, β3]
−1[α3, β3](α1)

nα1α
−1
1 [α3, β3]

−1(α−1
1 [α3, β3]

−1)n

= β1(α1)
n+1(α−1

1 [α3, β3]
−1)n+1

and so we are done. □

• Φn(α2) = α2

Proof. We note that under Φ our α2 is fixed, thus for any power of Φ it remains fixed. □

• Φn(β2) = β2

Proof. We note that under Φ our β2 is fixed, thus for any power of Φ it remains fixed. □

• Φn(α3) =
(
[α3, β3]α1

)n
α3

(
α−1
1 [α3, β3]

−1
)n

Proof. We will proceed by induction. First we note that for n = 1 we have(
[α3, β3]α1

)
α3

(
α−1
1 [α3, β3]

−1
)
= [α3, β3]α1α3α

−1
1 [α3, β3]

−1

which is our Φ(α3) and thus our base case holds. Next, suppose that

Φn(α3) =
(
[α3, β3]α1

)n
α3

(
α−1
1 [α3, β3]

−1
)n

for some n ∈ Z>0. We wish to show that for n+ 1

Φn+1(α3) =
(
[α3, β3]α1

)n+1
α3

(
α−1
1 [α3, β3]

−1
)n+1

We begin by noting that
Φn+1(α3) = Φ

(
Φn(α3)

)
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thus by our induction hypothesis we have

Φ
(
Φn(α3)

)
= Φ

(
([α3, β3]α1)

nα3(α
−1
1 [α3, β3]

−1)n
)

= Φ
(
([α3, β3]α1)

n
)
Φ(α3)Φ

(
(α−1

1 [α3, β3]
−1)n

)
Now by our previous lemmas this becomes

Φn+1(α3) = Φ
(
([α3, β3]α1)

n
)
Φ(α3)Φ

(
(α−1

1 [α3, β3]
−1)n

)
=

(
[α3, β3]α1

)n
[α3, β3]α1α3α

−1
1 [α3, β3]

−1
(
α−1
1 [α3, β3]

−1
)n

=
(
[α3, β3]α1

)n+1
α3

(
α−1
1 [α3, β3]

−1
)n+1

and so we are done. □

• Φn(β3) =
(
[α3, β3]α1

)n
β3
(
α−1
1 [α3, β3]

−1
)n

Proof. We will proceed by induction. First we note that for n = 1 we have(
[α3, β3]α1

)
β3
(
α−1
1 [α3, β3]

−1
)
= [α3, β3]α1β3α

−1
1 [α3, β3]

−1

which is our Φ(α3) and thus our base case holds. Next, suppose that

Φn(β3) =
(
[α3, β3]α1

)n
β3
(
α−1
1 [α3, β3]

−1
)n

for some n ∈ Z>0. We wish to show that for n+ 1

Φn+1(β3) =
(
[α3, β3]α1

)n+1
β3
(
α−1
1 [α3, β3]

−1
)n+1

We begin by noting that
Φn+1(β3) = Φ

(
Φn(β3)

)
thus by our induction hypothesis we have

Φ
(
Φn(β3)

)
= Φ

(
([α3, β3]α1)

nβ3(α
−1
1 [α3, β3]

−1)n
)

= Φ
(
([α3, β3]α1)

n
)
Φ(β3)Φ

(
(α−1

1 [α3, β3]
−1)n

)
Now by our previous lemmas this becomes

Φn+1(β3) = Φ
(
([α3, β3]α1)

n
)
Φ(β3)Φ

(
(α−1

1 [α3, β3]
−1)n

)
=

(
[α3, β3]α1

)n
[α3, β3]α1β3α

−1
1 [α3, β3]

−1
(
α−1
1 [α3, β3]

−1
)n

=
(
[α3, β3]α1

)n+1
β3
(
α−1
1 [α3, β3]

−1
)n+1

and so we are done. □

4.3. Computing Fix
(
(Φn)∗

)
.

4.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

• A1 :
A1 =

(
[A3, B3]A1

)n
A1

(
A−1

1 [A3, B3]
−1

)n
A1 =

(
A1

)n
A1

(
A−1

1

)n
A1 = A1

(
A1

)n−1
A1

(
A−1

1

)n
A1 = A1

• B1 :
B1 = B1

(
A1

)n(
A−1

1 [A3, B3]
−1

)n
I =

(
A1

)n(
A−1

1 [A3, B3]
−1

)n(
[A3, B3]A1

)n
=

(
A1

)n
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• A3 :
A3 =

(
A1[A3, B3]

)n
A3

(
[A3, B3]

−1A−1
1

)n
A3 =

(
A1

)n
A3

(
A−1

1

)n
A3

(
A1

)n
=

(
A1

)n
A3[

(A1)
n, A3

]
= I

• B3 :
B3 =

(
A1[A3, B3]

)n
B3

(
[A3, B3]

−1A−1
1

)n
B3 =

(
A1

)n
B3

(
A−1

1

)n
B3

(
A1

)n
=

(
A1

)n
B3[

(A1)
n, B3

]
= I

Therefore, with the relations (
[A3, B3]A1

)n
=

(
A1

)n[
(A1)

n, A3

]
= I[

(A1)
n, B3

]
= I

our fixed point set for the map
(
Φn

)∗
=

(
(Tγ1 ◦ T−1

γ2 )n
)∗

is defined as follows

Fix
(
(Φn)∗

)
=

{
(Ai, Bi) ∈ SU(2)6 :

3∏
i=1

[
Ai, Bi

]
= I,

(
[A3, B3]A1

)n
=

(
A1

)n
,
[
(A1)

n, A3

]
= I,

[
(A1)

n, B3

]
= I

}
Now, observe that (A1)

n is involved in three of our four relations, and that based on this A1 essentially determines
the other five entries. Thus define the map

µ : Fix
(
(Φn)∗

)
−→ SU(2)

given by (
A1, B1, A2, B2, A3, B3

)
7−→ A1

First, note that µ is a restriction of the projection map

p : SU(2)6 −→ SU(2)

which we know to be continuous as projections in the product topology are continuous, thus µ is continuous. Next
we claim that µ is surjective.

Lemma 9. The map
µ : Fix

(
(Φn)∗

)
−→ SU(2)(

A1, B1, A2, B2, A3, B3

)
7−→ A1

is surjective

Proof. Fix n ∈ Z\{0} and let A1 ∈ SU(2). Now we wish to find corresponding B1, A2, B2, A3, B3 ∈
SU(2) such that the 6-tuple lies in our fixed point set, that is(

A1, B1, A2, B2, A3, B3

)
∈ Fix

(
(Φn)∗

)
To do so let us consider the relations that these matrices must satisfy∏3

i=1

[
Ai, Bi

]
= I(

[A3, B3]A1

)n
=

(
A1

)n[
(A1)

n, A3

]
=

[
(A1)

n, B3

]
= I
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Observe that for the second and third relations, if we take both A3 and B3 to be the identity matrix
then these two are satisfied. Furthermore, for the product of the commutator relation, with our
choices of A3 and B3, this becomes [

A1, B1

]
=

[
A2, B2

]−1

Thus, we may choose our B1, A2 and B2 such that this equality holds, for simplicity’s sake again
set them equal to the identity. With this 6-tuple(

A1, IB1 , IA2 , IB2 , IA3 , IB3

)
we have shown that it satisfies the relations in our fixed point set and thus for arbitrary A1 ∈ SU(2)
have found a corresponding element of our domain. Therefore, our map µ is surjective. □

Having shown that our map µ is a continuous surjection, we now wish to use it to classify our fixed point set. To
do so we first define the following sets in SU(2) based on our possible values of

(
A1

)n
. Let

An
̸± :=

{
A1 ∈ SU(2) :

(
A1

)n ̸= ±I
}

be the set of all A1 whose n-th power is non-central in SU(2) and let

An
± :=

{
A1 ∈ SU(2) :

(
A1

)n
= ±I

}
denote the set of all A1 whose n-th power is central in SU(2). However, note that we can further partition this
second set into the following two subsets,

An
+ :=

{
A1 ∈ SU(2) :

(
A1

)n
= I

}
and

An
− :=

{
A1 ∈ SU(2) :

(
A1

)n
= −I

}
We may note that by construction, these three sets partition SU(2) as they represent the collection of fibers of the
n-th power map. Now, with these sets we may consider their preimages under our map µ, notably,

µ−1
(
An

̸±
)
=

{
(A1, B1, A2, B2, A3, B3) ∈ Fix

(
(Φn)∗

)
:
(
A1

)n ̸= ±I
}

and

µ−1
(
An

±
)
=

{
(A1, B1, A2, B2, A3, B3) ∈ Fix

(
(Φn)∗

)
:
(
A1

)n
= ±I

}
which we can represent as

µ−1
(
An

±
)
= µ−1

(
An

+

)
∪ µ−1

(
An

−
)

with

µ−1
(
An

+

)
=

{
(A1, B1, A2, B2, A3, B3) ∈ Fix

(
(Φn)∗

)
:
(
A1

)n
= I

}
and

µ−1
(
An

−
)
=

{
(A1, B1, A2, B2, A3, B3) ∈ Fix

(
(Φn)∗

)
:
(
A1

)n
= −I

}
Since µ is a continuous surjection and as previously noted our characterization sets, An

̸± and An
± partition SU(2),

it follows that our fixed point set may be expressed as the union of these respective preimages, that is

Fix
(
(Φn)∗

)
= µ−1

(
An

̸±
)
∪ µ−1

(
An

±
)
= µ−1

(
An

̸±
)
∪
(
µ−1

(
An

+

)
∪ µ−1

(
An

−
))

Therefore, in order to classify the connectedness of our fixed point set, it suffices to investigate the connectedness
of these preimages. First, we will consider the preimage over the collection of A1 such that their n-th power is a
non-central element of SU(2). To do so lets fix A1 ∈ An

̸±. Then, we will consider our original relations from the

fixed point set. We begin by noting that by our last two relations, we know that
(
A1

)n
commutes with both A3

and B3. Thus, by definition A3 and B3 are in the centralizer of
(
A1

)n
. Since

(
A1

)n
is assumed to be a non-central

element, its centralizer is a maximal torus in SU(2). It follows that both A3 and B3 lie in this maximal torus.
Recall that every maximal torus is abelian, hence, A3 and B3 must commute, that is[

A3, B3

]
= I
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Now we may consider the product of the commutator relation, noting that with A3 and B3 commuting our
expression simplifies as follows ∏3

i=1

[
Ai, Bi

]
= I[

A1, B1

][
A2, B2

][
A3, B3

]
= I[

A1, B1

][
A2, B2

]
= I[

A1, B1

]
=

[
A2, B2

]−1

Next lets examine our second relation. Observe that since the commutator of A3 and B3 is in the center of SU(2),
then it commutes with A1 and so we may distribute the exponent and realize that this relation is trivial. Therefore,
for each A1 ∈ An

̸± we can express its corresponding stratum of the fixed point set as

{A1}×F ̸±
A1

:=
{
A1

}
×
{
(B1, A2, B2, A3, B3) ∈ SU(2)5 :

[
A1, B1

]
=

[
A2, B2

]−1
,
[
A3, B3

]
=

[
(A1)

n, A3

]
=

[
(A1)

n, B3

]
= I

}
Hence, the preimage µ−1

(
An

̸±
)
can be represented by the union of over all such A1 ∈ An

̸± of these corresponding
fixed point stratum sets, that is

µ−1
(
An

̸±
)
=

⋃
A1∈An

̸±

{A1} × F ̸±
A1

Next, we will consider the preimage over the collection A1 such that their n-th power is a central element of SU(2).
To do so lets fix A1 ∈ An

±. Then, we will consider our original relations from the fixed point set. We begin by
considering the product of the commutators relation, noting that we cannot simplify this with the extra condition
on A1, and so we move on. Next lets examine our second relation. Observe that by our intial assumption on A1

this relation simplifies to (
[A3, B3]A1

)n
= ±I

Finally, examining our last two relations, since (A1)
n commutes with every element of SU(2), then these relations

are trivial. Thus for each A1 ∈ An
± we can express its corresponding stratum of the fixed point set as

{A1} × F±
A1

:=
{
A1

}
×

{
(B1, A2, B2, A3, B3) ∈ SU(2)5 :

3∏
i=1

[
Ai, Bi

]
= I,

(
[A3, B3]A1

)n
= ±I

}
However, as we previously observed, we can split An

± into two subsets, An
+ and An

−. Therefore, for each A
′
1 ∈ An

+

we can express its corresponding stratum of the fixed point set as

{A′
1} × F+

A′
1
:=

{
A′

1

}
×

{
(B1, A2, B2, A3, B3) ∈ SU(2)5 :

3∏
i=1

[
Ai, Bi

]
= I,

(
[A3, B3]A

′
1

)n
= I

}
Likewise, for each A′′

1 ∈ An
− we can express its corresponding stratum of the fixed point set as

{A′′
1} × F−

A′′
1
:=

{
A′′

1

}
×

{
(B1, A2, B2, A3, B3) ∈ SU(2)5 :

3∏
i=1

[
Ai, Bi

]
= I,

(
[A3, B3]A

′′
1

)n
= −I

}
Now, note that these two fixed point stratum sets are disjoint as their corresponding characterization sets An

+ and

An
− are disjoint and so the A1 arguments of each respective set cannot agree. Hence, the preimage µ−1

(
An

±
)
can

be represented as the disjoint union of the two respective unions over all such A′
1 ∈ An

+ and A′′
1 ∈ An

− of these
corresponding fixed point stratum sets, that is

µ−1
(
An

±
)
=

⋃
A′

1∈An
+

{A′
1} × F+

A′
1
⊔

⋃
A′′

1∈An
−

{A′′
1} × F−

A′′
1

Now that we have described each respective preimage of µ which partition our fixed point set. We may observe
that our fixed point set can be represented as the disjoint union of three respective unions of our fixed point
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stratum sets, {A1} × F ̸±
A1
, {A′

1} × F+
A′

1
, and {A′′

1} × F−
A′′

1
, over our A1 characterization sets, An

̸±, An
+, and An

−.

That is, from our original representation

Fix
(
(Φn)∗

)
= µ−1

(
An

̸±
)
∪

(
µ−1

(
An

+

)
∪ µ−1

(
An

−
))

we have that
Fix

(
(Φn)∗

)
=

⋃
A1∈An

̸±

{A1} × F ̸±
A1

∪
⋃

A′
1∈An

+

{A′
1} × F+

A′
1
∪

⋃
A′′

1∈An
−

{A′′
1} × F−

A′′
1

Due note that this is technically a disjoint union of these respective unions as by construction the A1 argument
of each respective collection of fixed point stratum sets cannot agree. Therefore, as we attempt to classify the
connectedness of our fixed point set for arbitrary powers of n, it suffices to determine the connectedness of each
collection of fixed point stratum sets respectively. We will begin by investigating the connectedness of the preimage
of our characterization set An

̸±, that is

µ−1
(
An

̸±
)
=

⋃
A1∈An

̸±

{A1} × F ̸±
A1

To do so we first consider each individual fixed point stratum set {A1} × F ̸±
A1
.

Lemma 10. {A1} × F ̸±
A1

is connected for every A1 ∈ An
̸±, n ∈ Z \ {0}

Proof. Fix n ∈ Z \ {0} and fix A1 ∈ An
̸±. With

{A1}×F ̸±
A1

:=
{
A1

}
×
{
(B1, A2, B2, A3, B3) ∈ SU(2)5 :

[
A1, B1

]
=

[
A2, B2

]−1
,
[
A3, B3

]
=

[
(A1)

n, A3

]
=

[
(A1)

n, B3

]
= I

}
we begin by noting that the singleton set {A1} is connected in SU(2) and the product

{A1} × F ̸±
A1

is homeomorphic to F ̸±
A1
, as it is just a copy of this set at A1. Thus to determine the connectedness

of the fixed point stratum set, it suffices to show the connectedness of F ̸±
A1
. With this, we first

define
B ̸±
A1

:=
{
(B1, A3, B3) ∈ SU(2)3 :

[
A3, B3

]
=

[
(A1)

n, A3

]
=

[
(A1)

n, B3

]
= I

}
Now consider the map

π : F ̸±
A1

−→ B ̸±
A1

given by (
B1, A2, B2, A3, B3

)
7−→

(
B1, A3, B3

)
Note that π is a restriction of the projection map

p : SU(2)5 −→ SU(2)3

which we know to be continuous as projections in the product topology are continuous, thus π is

continuous. Additionally, we claim that π is surjective. To see this, take
(
B1, A3, B3

)
∈ B ̸±

A1
. By

the definition of B ̸±
A1
, we have[

A3, B3

]
= I

[
(A1)

n, A3

]
= I

[
(A1)

n, B3

]
= I

Thus our goal is to find an A2, B2 ∈ SU(2) such that the 5-tuple
(
B1, A2, B2, A3, B3

)
lies in F ̸±

A1
.

That is [
A1, B1

]
=

[
A2, B2

]−1

Define
A2 := A−1

1 and B2 := B−1
1 ,

note that since SU(2) is a group, then A2, B2 ∈ SU(2). Now, observe that[
A1, B1

]
= A1B1A

−1
1 B−1

1 = A−1
2 B−1

2 A2B2 =
[
A2, B2

]−1
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Hence along with the assumed commutation relations in B ̸±
A1
, it follows that(

B1, A2, B2, A3, B3

)
∈ F ̸±

A1

and thus

π
(
B1, A2, B2, A3, B3

)
=

(
B1, A3, B3

)
so π is surjective. Now that we have established that π is a continuous surjection, let us consider

the fibers of this map. Given a point
(
B1, A3, B3

)
∈ B ̸±

A1
, the fiber over this point is defined as

π−1
(
B1, A3, B3

)
=

{
(B1, A2, B2, A3, B3) ∈ F ̸±

A1

}
Note that since in F ̸±

A1
the only relation involving

(
A2, B2

)
is[

A2, B2

]
=

[
A1, B1

]−1

we may fix
(
B1, A3, B3

)
∈ B ̸±

A1
and define the map

ψ : π−1
(
B1, A3, B3

)
−→

{
(A2, B2) ∈ SU(2)2 : [A2, B2] = [A1, B1]

−1
}

given by (
B1, A2, B2, A3, B3

)
7−→

(
A2, B2

)
Since we fixed our fiber, acting as the domain, by the uniqueness of inverses in SU(2) our map ψ is
well-defined and surjective. Moreover, by this uniqueness property and the fact that we fixed our
B1, A3 and B3 arguments, we must have that the map is injective, thus ψ is a bijection. Now we
observe that ψ is a restriction of the projection map

p : SU(2)5 −→ SU(2)2

which we know to be continuous as projections in the product topology are continuous, thus ψ is
continuous. Furthermore, ψ−1 is a restriction of the inclusion map

i : SU(2)2 −→ SU(2)5

which we know to be continuous as inclusions in the product topology are continuous, thus ψ−1 is
continuous. Therefore, ψ is a homeomorphism, that is

π−1
(
B1, A3, B3

) ∼= {
(A2, B2) ∈ SU(2)2 : [A2, B2] = [A1, B1]

−1
}
.

Importantly, observe that {
(A2, B2) ∈ SU(2)2 : [A2, B2] = [A1, B1]

−1
}

is just a fiber over the commutator map of SU(2) and thus is connected. Since we have shown
that an arbitrary fiber, π−1(B1, A3, B3), is connected, it follows that the fibers of our map π are
connected. Therefore, π is a continuous, surjective map with connected fibers from our total space

F ̸±
A1

into our defined base space B ̸±
A1
. Thus, we will now investigate the connectedness of this base

space B±
A1
. To do so let us first examine the commutation relations in B ̸±

A1
, noting that[

A3, B3

]
=

[
(A1)

n, A3

]
=

[
(A1)

n, B3

]
= I

implies that A3, B3 commute. Recall that any two elements of SU(2) commute if and only if they
lie in the same maximal torus, which in SU(2) is conjugate to the subgroup of diagonal matrices.
Let T denote a maximal torus in SU(2),

T =

{(
eiθ 0
0 e−iθ

)
: θ ∈ [0, 2π)

}
Since A3, B3 commute, there exists g ∈ SU(2) such that

g A3g
−1, g B3g

−1 ∈ T
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This follows from the fact that all maximal tori in SU(2) are conjugate and every element is
contained in some maximal torus. Therefore, the set of commuting 2-tuples in SU(2) is

C ̸±
A1

:=
{
(a3, b3) ∈ SU(2)2 : [a3, b3] = I

}
=

{
(g t1g

−1, g t2g
−1) : g ∈ SU(2), t1, t2 ∈ T

}
We wish to show that C ̸±

A1
is connected, in order to do so we define the map

Ω : SU(2)× T2 −→ C ̸±
A1

by

Ω
(
g, (t1, t2)

)
=

(
g t1g

−1, g t2g
−1

)
.

Observe that the domain of the map, SU(2) × T2, is connected since SU(2) is connected, T is
connected, and the finite product of connected spaces is connected. Therefore, it suffices to show
that Ω is continuous and surjective, as the image of a connected space under a continuous map

is connected. We begin by verifying the surjectivity of Ω. Let (a3, b3) ∈ C ̸±
A1

, then there exists

g ∈ SU(2) such that

g−1a3g, g
−1b3g ∈ T.

This follows from the fact that all maximal tori in SU(2) are conjugate and every element is
contained in some maximal torus. Now, if we set

t1 = g−1a3g and t2 = g−1b3g.

then every element of C ̸±
A1

is in the image of SU(2)×T2 under Ω and so the map is surjective. For the
continuity of the map, we note that Ω is defined on group operations, multiplication and inversion,

which are smooth in SU(2), and so the map is continuous. Hence, C ̸±
A1

is connected. Now, there

are no relations involving B1 in the definition of B ̸±
A1

, therefore, for any fixed commuting 2-tuple(
A3, B3

)
, B1 can be any element in SU(2). Thus,

B ̸±
A1

∼= C ̸±
A1

× SU(2).

We know that SU(2) is connected and we have just shown that C ̸±
A1

is connected, therefore, since

the finite product of connected spaces is connected, it follows that B ̸±
A1

is connected. To recap, we
have shown that there is a continuous surjection

π : F ̸±
A1

−→ B ̸±
A1

with non-empty, connected fibers. Therefore, since the base space B ̸±
A1

is connected, it follows that

F ̸±
A1

is connected. Hence the entire fixed point stratum set

{A1} × F ̸±
A1

is connected. □

We have now shown that for our preimage over the characterization set An
̸± each fixed point stratum set is

connected. So to determine the connectedness of µ−1
(
An

̸±
)
we need to consider the union of all such fixed point

stratum sets over our characterization set.

Lemma 11. µ−1
(
An

̸±
)
=

⋃
A1∈An

̸±
{A1} × F ̸±

A1
has |n| connected components for every n ∈ Z \ {0}
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Proof. Fix n ∈ Z \ {0}. We begin by noting that by the previous lemma, we know that for each
A1 ∈ An

̸± our corresponding fixed point stratum set

{A1}×F ̸±
A1

:=
{
A1

}
×
{
(B1, A2, B2, A3, B3) ∈ SU(2)5 :

[
A1, B1

]
=

[
A2, B2

]−1
,
[
A3, B3

]
=

[
(A1)

n, A3

]
=

[
(A1)

n, B3

]
= I

}
is connected. Thus the remaining determination of the connectedness of our preimage

µ−1
(
An

̸±
)
=

⋃
A1∈An

̸±

{A1} × F ̸±
A1

depends on that of the parameter space, our characterization set An
̸±. Now with

An
̸± =

{
A1 ∈ SU(2) :

(
A1

)n ̸= ±I
}

let us recall that this is merely the union of fibers of the n-th power map of SU(2). Thus we will
consider this map,

pn : SU(2) −→ SU(2)

given by
Z 7−→ Zn

Observe that since pn is surjective

An
̸± = SU(2) \

(
p−1
n (I) ∪ p−1

n (−I)
)

Thus let us examine
SU(2) \

(
p−1
n (I) ∪ p−1

n (−I)
)

Note that for any W ∈ SU(2) \
(
p−1
n (I) ∪ p−1

n (−I)
)
, W is diagonalizable and can be written up

to conjugation as

W ∼
(
eiθ 0
0 e−iθ

)
, θ ∈ [0, π]

Now this represents the conjugacy class determined by the eigenvalues (eiθ, e−iθ), which by our
condition on W that (

W
)n ̸= I

must satisfy (
eiθ

)n ̸= ±1 =⇒ einθ ̸= ±1 ⇐⇒ nθ ̸≡ 0 (mod π)

Therefore, we have

θ ̸= πk

n
, k ∈ Z

Due to the equivalence under conjugation of θ ∼ −θ and θ ∼ θ + 2π in SU(2), we only consider
θ ∈ [0, π]. Removing all such angles from our interval [0, π] for 0 ≤ k ≤ n we are left with n open
intervals (

0,
π

n

)
,

(
π

n
,
2π

n

)
, . . . ,

(
(n− 1)π

n
, π

)
.

Now, we claim that each of these open intervals corresponds to a connected component of

SU(2) \
(
p−1
n (I) ∪ p−1

n (−I)
)

[INSERT] DR. DUNCAN: Implicit/Inverse Function Theorem Argument

□

With this we have shown that µ−1
(
An

̸±
)
has |n| connected components for every n ∈ Z \ {0}. Thus it is left to

classify the connectedness of our two remaining preimages which partition our fixed point set. To do so, first we
will consider our fixed point stratum sets which arise in the case where the n-th power of A1 is in the center of
SU(2), specifically when it is equal to the identity.
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Lemma 12. For every n ∈ Z \ {0} and A1 ∈ An
+, {A1} × F+

A1
has⌊

|n|
2

⌋
+ 1

connected components

Proof. Fix n ∈ Z \ {0} and fix A1 ∈ An
+. With

{A1} × F+
A1

:=
{
A1

}
×

{
(B1, A2, B2, A3, B3) ∈ SU(2)5 :

3∏
i=1

[
Ai, Bi

]
= I,

(
[A3, B3]A1

)n
= I

}
we begin by noting that the singleton set {A1} is connected in SU(2) and the product

{A1} × F+
A1

is homeomorphic to F+
A1

as it is just a copy of this set at A1. Thus to determine the connectedness

of the fixed point stratum set, it suffices to show the connectedness of F+
A1
. With this, we first

define

B+
A1

:=
{
(B1, A3, B3) ∈ SU(2)4 : ([A3, B3]A1)

n = I
}

Now consider the map

π : F+
A1

−→ B+
A1

given by (
B1, A2, B2, A3, B3

)
7−→

(
B1, A3, B3

)
Note that π is a restriction of the projection map

p : SU(2)5 −→ SU(2)3

which we know to be continuous as projections in the product topology are continuous, thus π is
continuous. Additionally, we claim that π is surjective. To see this, take

(
B1, A3, B3

)
∈ B+

A1
. Then

by the definition of B+
A1
, we have (

[A3, B3]A1

)n
= I

Thus our goal is to find an A2, B2 ∈ SU(2) such that the 5-tuple
(
B1, A2, B2, A3, B3

)
lies in F+

A1
,

that is [
A2, B2

]
=

[
A1, B1

]−1[
A3, B3

]−1

Recall that every element in SU(2) can be expressed as a commutator. Hence, because[
A1, B1

]−1[
A3, B3

]−1 ∈ SU(2)

then by the surjectivity of the commutator map in SU(2), there exists an X, Y ∈ SU(2) such that[
X,Y

]
=

[
A1, B1

]−1[
A3, B3

]−1

Define

A2 := X and B2 := Y.

Now, observe that [
A1, B1

][
X,Y

][
A3, B3

]
=

[
A1, B1

]([
A1, B1

]−1[
A3, B3

]−1)[
A3, B3

]
=

([
A1, B1

][
A1, B1

]−1)([
A3, B3

]−1[
A3, B3

])
= I

Hence along with the relation in B+
A1
, it follows that(
B1, A2, B2, A3, B3

)
∈ F+

A1
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and thus

π
(
B1, A2, B2, A3, B3

)
=

(
B1, A3, B3

)
so π is surjective. Now that we have established that π is a continuous surjection, let us consider
the fibers of this map. Given a point

(
B1, A3, B3

)
∈ B+

A1
, the fiber over this point is defined as

π−1
(
B1, A3, B3

)
=

{
(B1, A2, B2, A3, B3) ∈ F+

A1

}
Note that since in F+

A1
the only relation involving

(
A2, B2

)
is the product of the commutators,

which we can express as [
A2, B2

]
=

[
A1, B1

]−1[
A3, B3

]−1

we may fix
(
B1, A3, B3

)
∈ B+

A1
and define the map

ψ : π−1
(
B1, A3, B3

)
−→

{
(A2, B2) ∈ SU(2)2 : [A2, B2] = [A1, B1]

−1[A3, B3]
−1

}
given by (

B1, A2, B2, A3, B3

)
7−→

(
A2, B2

)
Since we fixed our fiber, acting as the domain, by the uniqueness of inverses in SU(2) our map ψ is
well-defined and surjective. Moreover, by this uniqueness property and the fact that we fixed our
B1, A3 and B3 arguments, we must have that the map is injective, thus ψ is a bijection. Now we
observe that ψ is a restriction of the projection map

p : SU(2)5 −→ SU(2)2

which we know to be continuous as projections in the product topology are continuous, thus ψ is
continuous. Furthermore, ψ−1 is a restriction of the inclusion map

i : SU(2)2 −→ SU(2)5

which we know to be continuous as inclusions in the product topology are continuous, thus ψ−1 is
continuous. Therefore, ψ is a homeomorphism, that is

π−1
(
B1, A3, B3

) ∼= {
(A2, B2) ∈ SU(2)2 : [A2, B2] = [A1, B1]

−1[A3, B3]
−1

}
Importantly, observe that{

(A2, B2) ∈ SU(2)2 : [A2, B2] = [A1, B1]
−1[A3, B3]

−1
}

is just a fiber over the commutator map of SU(2) and thus is connected. Since we have shown
that an arbitrary fiber, π−1(B1, A3, B3), is connected, it follows that the fibers of our map π are
connected. Therefore, π is a continuous, surjective map with connected fibers from our total space
F+
A1

into our defined base space B+
A1
. Thus, we will now investigate the connectedness of this base

space B+
A1
. To do so consider the n-th power map of SU(2)

pn : SU(2) −→ SU(2)

given by

Z 7−→ Zn

Let us examine the fiber over the identity

p−1
n (I) =

{
X ∈ SU(2) : (X)n = I

}
Note that for any X ∈ p−1

n (I), X is a matrix in SU(2), so it is diagonalizable and can be written
up to conjugation as

X ∼
(
eiθ 0
0 e−iθ

)
, θ ∈ [0, π]

Now this represents the conjugacy class determined by the eigenvalues (eiθ, e−iθ), which by our
condition on X that (

X
)n

= I
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must satisfy (
eiθ

)n
= 1 =⇒ einθ = 1 ⇐⇒ nθ ≡ 0 (mod 2π)

Therefore, we have

θ =
2πk

n
, k ∈ Z

However, due to the equivalence under conjugation of θ ∼ −θ and θ ∼ θ + 2π in SU(2), we only
consider θ ∈ [0, π]. Thus,

0 ≤ 2πk

|n|
≤ π =⇒ 0 ≤ k ≤

⌊
|n|
2

⌋
and so k = 0, 1, . . . ,

⌊
|n|
2

⌋
. Hence our possible eigenvalue pairs are{

e
i2πk
|n| , e

−i2πk
|n|

}
where k = 0, 1, . . . ,

⌊
|n|
2

⌋
Since in SU(2), two matrices are conjugate if and only if they have the same eigenvalues, these
pairs form distinct conjugacy classes. So this fiber is equal to the union of the conjugacy classes of
the diagonal matrices with these distinct eigenvalues, that is⌊

|n|
2

⌋⋃
k=0

D+
k

where

D+
k :=

{
Udiag

(
e

i2πk
|n| , e

−i2πk
|n|

)
U−1 : U ∈ SU(2)

}
Now, from our relation we know that [A3, B3]A1 lies in this fiber of the n-th power map, thus

[A3, B3]A1 ∈

⌊
|n|
2

⌋⋃
k=0

D+
k

Recall that the single element class {I} is connected and that every conjugacy class of a non-central
element in SU(2) is connected and homeomorphic to S2. Therefore we know that

D+
k is connected for every k = 0, 1, . . . ,

⌊
|n|
2

⌋
However, it is important to note that ⌊

|n|
2

⌋⋃
k=0

D+
k

is a disjoint union, thus consists of
⌊
|n|
2

⌋
+ 1 connected components. Therefore

⌊
|n|
2

⌋⋃
k=0

D+
k
∼= {I} ⊔ S2 ⊔ · · · ⊔ S2︸ ︷︷ ︸⌊

|n|
2

⌋
times

Now note that B1 is not involved in the relation in B+
A1

and so it is unconstrained in SU(2). We do
have, however, that A3 and B3 are involved this relation, thus we will consider the map

Λ : SU(2)2 −→ SU(2)

given by (
A3, B3

)
7−→

[
A3, B3

]
A1



46 CONTENTS

Observe that this is a continuous map as it is defined on a group operation, multiplication, which
is smooth in SU(2). The key observation is that by our relation on B+

A1
we have that(

B1, A3, B3

)
∈ B+

A1
⇐⇒ Λ

(
A3, B3

)
∈ p−1

n (I)

Therefore,

B+
A1

= SU(2)× Λ−1
(
p−1
n (I)

)
and hence we can express B+

A1
as the disjoint union of

⌊
|n|
2

⌋
+ 1 subsets, that is

B+
A1

= SU(2)×


⌊
|n|
2

⌋⋃
k=0

[
Λ−1

(
D+

k

)]
Since Λ is continuous and the continuous preimage of a connected set is connected, it follows that

Λ−1
(
D+

k

)
is connected for each k = 0, 1, . . . ,

⌊
|n|
2

⌋
. Moreover, since SU(2) is connected and the finite product

of a connected spaces is connected, it follows that for each k = 0, 1, . . . ,
⌊
|n|
2

⌋
,

SU(2)× Λ−1
(
D+

k

)
is connected. Therefore, our set B+

A1
has

⌊
|n|
2

⌋
+ 1 connected components. So we have shown that

there is a continuous surjection

π : F+
A1

−→ B+
A1

with non-empty, connected fibers. Since every fiber is non-empty and connected, and the base space

B+
A1

has
⌊
|n|
2

⌋
+ 1 connected components, it follows that F+

A1
has

⌊
|n|
2

⌋
+ 1 connected components.

Hence the entire fixed point stratum set

{A1} × F+
A1

has
⌊
|n|
2

⌋
+ 1 connected components. □

Having classified the connectedness of each individual fixed point stratum set corresponding to the fibers of
A1 ∈ An

+ under µ, we now wish to consider the union so that we know the number of connected components of
the entire preimage.

Lemma 13. For every n ∈ Z \ {0},
µ−1

(
An

+

)
=

⋃
A1∈An

+

{A1} × F+
A1

has (⌊
|n|
2

⌋
+ 1

)2

connected components.

Proof. Fix n ∈ Z \ {0}. We begin by noting that by the previous lemma, we know that for each
A1 ∈ An

+ our corresponding fixed point stratum set

{A1} × F+
A1

:=
{
A1

}
×

{
(B1, A2, B2, A3, B3) ∈ SU(2)5 :

3∏
i=1

[
Ai, Bi

]
= I,

(
[A3, B3]A1

)n
= I

}
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has
⌊
|n|
2

⌋
+ 1 connected components. Thus the remaining determination of the connectedness of

our preiamge

µ−1
(
An

+

)
=

⋃
A1∈An

+

{A1} × F+
A1

depends on that of the parameter space, our characterization set An
+. Now with

An
+ =

{
A1 ∈ SU(2) :

(
A1

)n
= I

}
let us recall that this is merely the fiber of the identity under the n-th power map of SU(2). Thus
we will consider this fiber, first defining the n-th power map,

pn : SU(2) −→ SU(2)

given by
Z 7−→ Zn

Now the fiber of the identity under this map is simply

p−1
n (I) =

{
X ∈ SU(2) : (X)n = I

}
Now, for any X ∈ p−1

n (I), X is a matrix in SU(2), so it is diagonalizable and can be written up to
conjugation as

X ∼
(
eiθ 0
0 e−iθ

)
, θ ∈ [0, π]

Now this represents the conjugacy class determined by the eigenvalues (eiθ, e−iθ), which by our
condition on X that (

X
)n

= I

must satisfy (
eiθ

)n
= 1 =⇒ einθ = 1 ⇐⇒ nθ ≡ 0 (mod 2π)

Therefore, we have

θ =
2πk

n
, k ∈ Z

However, due to the equivalence under conjugation of θ ∼ −θ and θ ∼ θ + 2π in SU(2), we only
consider θ ∈ [0, π]. Thus,

0 ≤ 2πk

|n|
≤ π =⇒ 0 ≤ k ≤

⌊
|n|
2

⌋
and so k = 0, 1, . . . ,

⌊
|n|
2

⌋
. Hence our possible eigenvalue pairs are{

e
i2πk
|n| , e

−i2πk
|n|

}
where k = 0, 1, . . . ,

⌊
|n|
2

⌋
Since in SU(2), two matrices are conjugate if and only if they have the same eigenvalues, these
pairs form distinct conjugacy classes. So this fiber is equal to the union of the conjugacy classes of
the diagonal matrices with these distinct eigenvalues, that is⌊

|n|
2

⌋⋃
k=0

D+
k

where

D+
k :=

{
Udiag

(
e

i2πk
|n| , e

−i2πk
|n|

)
U−1 : U ∈ SU(2)

}
Now, recall that the single element class {I} is connected and that every conjugacy class of a
non-central element in SU(2) is connected and homeomorphic to S2. Therefore we know that

D+
k is connected for every k = 0, 1, . . . ,

⌊
|n|
2

⌋
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However, it is important to note that ⌊
|n|
2

⌋⋃
k=0

D+
k

is a disjoint union, thus consists of
⌊
|n|
2

⌋
+ 1 connected components. Therefore

⌊
|n|
2

⌋⋃
k=0

D+
k
∼= {I} ⊔ S2 ⊔ · · · ⊔ S2︸ ︷︷ ︸⌊

|n|
2

⌋
times

Hence, An
+ has

⌊
|n|
2

⌋
+ 1 connected components.

[INSERT] DR. DUNCAN: Implicit/Inverse Function Theorem Argument

□

We have now successfully classified the connectedness of two of our three preimages. Thus we turn our attention
to the final preimage which in part partitions our fixed point set. To do so, first we will consider our fixed point
stratum sets which arise in the case where the n-th power of A1 is in the center of SU(2), specifically when it is
equal to minus the identity.

Lemma 14. For every n ∈ Z \ {0} and A1 ∈ An
−, {A1} × F−

A1
has⌊

|n| − 1

2

⌋
+ 1

connected components

Proof. The proof follows very similarly to that of the F+
A1

case. Therefore, again fix n ∈ Z \ {0}
and fix A1 ∈ An

−. With

{A1} × F−
A1

:=
{
A1

}
×

{
(B1, A2, B2, A3, B3) ∈ SU(2)5 :

3∏
i=1

[
Ai, Bi

]
= I,

(
[A3, B3]A1

)n
= −I

}
we begin by noting that the singleton set {A1} is connected in SU(2) and the product

{A1} × F−
A1

is homeomorphic to F−
A1

as it is just a copy of this set at A1. Thus to determine the connectedness

of the fixed point stratum set, it suffices to show the connectedness of F−
A1
. With this, we first

define

B−
A1

:=
{
(B1, A3, B3) ∈ SU(2)4 : ([A3, B3]A1)

n = −I
}

Now consider the map

π : F−
A1

−→ B−
A1

given by (
B1, A2, B2, A3, B3

)
7−→

(
B1, A3, B3

)
Note that π is a restriction of the projection map

p : SU(2)5 −→ SU(2)3
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which we know to be continuous as projections in the product topology are continuous, thus π is
continuous. Additionally, we claim that π is surjective. To see this, take

(
B1, A3, B3

)
∈ B−

A1
. Then

by the definition of B−
A1
, we have (

[A3, B3]A1

)n
= −I

Thus our goal is to find an A2, B2 ∈ SU(2) such that the 5-tuple
(
B1, A2, B2, A3, B3

)
lies in F−

A1
,

that is [
A2, B2

]
=

[
A1, B1

]−1[
A3, B3

]−1

Recall that every element in SU(2) can be expressed as a commutator. Hence, because[
A1, B1

]−1[
A3, B3

]−1 ∈ SU(2)

then by the surjectivity of the commutator map in SU(2), there exists an X, Y ∈ SU(2) such that[
X,Y

]
=

[
A1, B1

]−1[
A3, B3

]−1

Define

A2 := X and B2 := Y.

Now, observe that [
A1, B1

][
X,Y

][
A3, B3

]
=

[
A1, B1

]([
A1, B1

]−1[
A3, B3

]−1)[
A3, B3

]
=

([
A1, B1

][
A1, B1

]−1)([
A3, B3

]−1[
A3, B3

])
= I

Hence along with the relation in B−
A1
, it follows that(
B1, A2, B2, A3, B3

)
∈ F−

A1

and thus

π
(
B1, A2, B2, A3, B3

)
=

(
B1, A3, B3

)
so π is surjective. Now that we have established that π is a continuous surjection, let us consider
the fibers of this map. Given a point

(
B1, A3, B3

)
∈ B−

A1
, the fiber over this point is defined as

π−1
(
B1, A3, B3

)
=

{
(B1, A2, B2, A3, B3) ∈ F−

A1

}
Note that since in F−

A1
the only relation involving

(
A2, B2

)
is the product of the commutators,

which we can express as [
A2, B2

]
=

[
A1, B1

]−1[
A3, B3

]−1

we may fix
(
B1, A3, B3

)
∈ B−

A1
and define the map

ψ : π−1
(
B1, A3, B3

)
−→

{
(A2, B2) ∈ SU(2)2 : [A2, B2] = [A1, B1]

−1[A3, B3]
−1

}
given by (

B1, A2, B2, A3, B3

)
7−→

(
A2, B2

)
Since we fixed our fiber, acting as the domain, by the uniqueness of inverses in SU(2) our map ψ is
well-defined and surjective. Moreover, by this uniqueness property and the fact that we fixed our
B1, A3 and B3 arguments, we must have that the map is injective, thus ψ is a bijection. Now we
observe that ψ is a restriction of the projection map

p : SU(2)5 −→ SU(2)2

which we know to be continuous as projections in the product topology are continuous, thus ψ is
continuous. Furthermore, ψ−1 is a restriction of the inclusion map

i : SU(2)2 −→ SU(2)5
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which we know to be continuous as inclusions in the product topology are continuous, thus ψ−1 is
continuous. Therefore, ψ is a homeomorphism, that is

π−1
(
B1, A3, B3

) ∼= {
(A2, B2) ∈ SU(2)2 : [A2, B2] = [A1, B1]

−1[A3, B3]
−1

}
Importantly, observe that{

(A2, B2) ∈ SU(2)2 : [A2, B2] = [A1, B1]
−1[A3, B3]

−1
}

is just a fiber over the commutator map of SU(2) and thus is connected. Since we have shown
that an arbitrary fiber, π−1(B1, A3, B3), is connected, it follows that the fibers of our map π are
connected. Therefore, π is a continuous, surjective map with connected fibers from our total space
F−
A1

into our defined base space B−
A1
. Thus, we will now investigate the connectedness of this base

space B−
A1
. To do so consider the n-th power map of SU(2)

pn : SU(2) −→ SU(2)

given by

Z 7−→ Zn

Let us examine the fiber over minus the identity

p−1
n (−I) =

{
Y ∈ SU(2) : (Y )n = −I

}
Note that for any Y ∈ p−1

n (−I), Y is a matrix in SU(2), so it is diagonalizable and can be written
up to conjugation as

Y ∼
(
eiθ 0
0 e−iθ

)
, θ ∈ [0, π]

Now this represents the conjugacy class determined by the eigenvalues (eiθ, e−iθ), which by our
condition on Y that (

Y
)n

= −I
must satisfy (

eiθ
)n

= −1 =⇒ einθ = −1 ⇐⇒ nθ ≡ π (mod 2π)

Therefore, we have

θ =
π + 2πk

n
=

(2k + 1)π

n
, k ∈ Z

However, due to the equivalence under conjugation of θ ∼ −ϕ and θ ∼ θ + 2π in SU(2), we only
consider θ ∈ [0, π]. Thus,

0 ≤ (2k + 1)π

|n|
≤ π =⇒ 0 ≤ k ≤

⌊
|n| − 1

2

⌋
and so k = 0, 1, . . . ,

⌊
|n|−1

2

⌋
. Hence our possible eigenvalue pairs are{

e
i(2k+1)π

|n| , e
−i(2k+1)π

|n|

}
where k = 0, 1, . . . ,

⌊
|n|−1

2

⌋
Since in SU(2), two matrices are conjugate if and only if they have the same eigenvalues, these
pairs form distinct conjugacy classes. So this fiber is equal to the union of the conjugacy classes of
the diagonal matrices with these distinct eigenvalues, that is⌊

|n|−1
2

⌋⋃
k=0

D−
k

where

D−
k :=

{
V diag

(
e

i(2k+1)π
|n| , e

−i(2k+1)π
|n|

)
V −1 : V ∈ SU(2)

}
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Now, from our relation we know that [A3, B3]A1 lies in this fiber of the n-th power map, thus

[A3, B3]A1 ∈

⌊
|n|−1

2

⌋⋃
k=0

D−
k

Recall that the single element class {−I} is connected and that every conjugacy class of a non-
central element in SU(2) is connected and homeomorphic to S2. Therefore we know that

D−
k is connected for every k = 0, 1, . . . ,

⌊
|n| − 1

2

⌋
However, it is important to note that ⌊

|n|−1
2

⌋⋃
k=0

D−
k

is a disjoint union, thus consists of
⌊
|n|−1

2

⌋
+ 1 connected components. Therefore⌊

|n|−1
2

⌋⋃
k=0

D−
k
∼= {I} ⊔ S2 ⊔ · · · ⊔ S2︸ ︷︷ ︸⌊

|n|−1
2

⌋
times

Now note that B1 is not involved in the relation in B−
A1

and so it is unconstrained in SU(2). We do
have, however, that A3 and B3 are involved this relation, thus we will consider the map

Λ : SU(2)2 −→ SU(2)

given by (
A3, B3

)
7−→

[
A3, B3

]
A1

Observe that this is a continuous map as it is defined on a group operation, multiplication, which
is smooth in SU(2). The key observation is that by our relation on B−

A1
we have that(

B1, A3, B3

)
∈ B−

A1
⇐⇒ Λ

(
A3, B3

)
∈ p−1

n (−I)
Therefore,

B−
A1

= SU(2)× Λ−1
(
p−1
n (−I)

)
and hence we can express B−

A1
as the disjoint union of

⌊
|n|−1

2

⌋
+ 1 subsets, that is

B−
A1

= SU(2)×


⌊
|n|−1

2

⌋⋃
k=0

[
Λ−1

(
D−

k

)]
Since Λ is continuous and the continuous preimage of a connected set is connected, it follows that

Λ−1
(
D−

k

)
is connected for each k = 0, 1, . . . ,

⌊
|n|−1

2

⌋
. Moreover, since SU(2) is connected and the finite

product of a connected spaces is connected, it follows that for each k = 0, 1, . . . ,
⌊
|n|−1

2

⌋
,

SU(2)× Λ−1
(
D−

k

)
is connected. Therefore, our set B−

A1
has

⌊
|n|−1

2

⌋
+ 1 connected components. So we have shown

that there is a continuous surjection

π : F−
A1

−→ B−
A1
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with non-empty, connected fibers. Since every fiber is non-empty and connected, and the base

space B−
A1

has
⌊
|n|−1

2

⌋
+ 1 connected components, it follows that F−

A1
has

⌊
|n|−1

2

⌋
+ 1 connected

components. Hence the entire fixed point stratum set

{A1} × F−
A1

has
⌊
|n|−1

2

⌋
+ 1 connected components. □

Having classified the connectedness of each individual fixed point stratum set corresponding to the fibers of
A1 ∈ An

− under µ, we now wish to consider the union so that we know the number of connected components of
the entire preimage.

Lemma 15. For every n ∈ Z \ {0},
µ−1

(
An

−
)
=

⋃
A1∈An

−

{A1} × F−
A1

has (⌊
|n| − 1

2

⌋
+ 1

)2

connected components.

Proof. Fix n ∈ Z \ {0}. We begin by noting that by the previous lemma, we know that for each
A1 ∈ An

− our corresponding fixed point stratum set

{A1} × F−
A1

:=
{
A1

}
×

{
(B1, A2, B2, A3, B3) ∈ SU(2)5 :

3∏
i=1

[
Ai, Bi

]
= I,

(
[A3, B3]A1

)n
= −I

}

has
⌊
|n|−1

2

⌋
+1 connected components. Thus the remaining determination of the connectedness of

our preiamge

µ−1
(
An

−
)
=

⋃
A1∈An

−

{A1} × F−
A1

depends on that of the parameter space, our characterization set An
−. Now with

An
− =

{
A1 ∈ SU(2) :

(
A1

)n
= −I

}
let us recall that this is merely the fiber of the identity under the n-th power map of SU(2). Thus
we will consider this fiber, first defining the n-th power map,

pn : SU(2) −→ SU(2)

given by
Z 7−→ Zn

Now the fiber of minus the identity under this map is simply

p−1
n (−I) =

{
Y ∈ SU(2) : (Y )n = −I

}
Now, for any Y ∈ p−1

n (I), Y is a matrix in SU(2), so it is diagonalizable and can be written up to
conjugation as

Y ∼
(
eiθ 0
0 e−iθ

)
, θ ∈ [0, π]

Now this represents the conjugacy class determined by the eigenvalues (eiθ, e−iθ), which by our
condition on Y that (

Y
)n

= −I
must satisfy (

eiθ
)n

= −1 =⇒ einθ = −1 ⇐⇒ nθ ≡ π (mod 2π)
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Therefore, we have

θ =
π + 2πk

n
=

(2k + 1)π

n
, k ∈ Z

However, due to the equivalence under conjugation of θ ∼ −θ and θ ∼ θ + 2π in SU(2), we only
consider θ ∈ [0, π]. Thus,

0 ≤ (2k + 1)π

|n|
≤ π =⇒ 0 ≤ k ≤

⌊
|n| − 1

2

⌋
and so k = 0, 1, . . . ,

⌊
|n|−1

2

⌋
. Hence our possible eigenvalue pairs are{

e
i(2k+1)π

|n| , e
−i(2k+1)π

|n|

}
where k = 0, 1, . . . ,

⌊
|n| − 1

2

⌋
Since in SU(2), two matrices are conjugate if and only if they have the same eigenvalues, these
pairs form distinct conjugacy classes. So this fiber is equal to the union of the conjugacy classes of
the diagonal matrices with these distinct eigenvalues, that is⌊

|n|−1
2

⌋⋃
k=0

D−
k

where

D−
k :=

{
V diag

(
e

i(2k+1)π
|n| , e

−i(2k+1)π
|n|

)
V −1 : V ∈ SU(2)

}
Now, recall that the single element class {−I} is connected and that every conjugacy class of a
non-central element in SU(2) is connected and homeomorphic to S2. Therefore we know that

D−
k is connected for every k = 0, 1, . . . ,

⌊
|n| − 1

2

⌋
However, it is important to note that ⌊

|n|−1
2

⌋⋃
k=0

D−
k

is a disjoint union, thus consists of
⌊
|n|−1

2

⌋
+ 1 connected components. Therefore

⌊
|n|−1

2

⌋⋃
k=0

D−
k
∼= {I} ⊔ S2 ⊔ · · · ⊔ S2︸ ︷︷ ︸⌊

|n|−1
2

⌋
times

Hence, An
− has

⌊
|n|−1

2

⌋
+ 1 connected components.

[INSERT] DR. DUNCAN: Implicit/Inverse Function Theorem Argument

□

Having classified the connectedness of the three preimages which make up our fixed point set, we now turn our
attention to a few lemmas which will aid in our proof of our main result.
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Lemma 16. For every n ∈ Z \ {0}, the preimage

µ−1
(
An

+

)
=

⋃
A1∈An

+

{A1} × F+
A1

has ⌊
|n|
2

⌋
+ 1

connected components in which A3 and B3 commute.

Proof. We begin by noting that it suffices to show that for each fixed point stratum set {A1}×F+
A1
,

in only one of its ⌊
|n|
2

⌋
+ 1

connected components can A3 and B3 commute. It would then follow that in taking the union over
our parameter space, the characterization set An

+, which in a previous lemma we showed has⌊
|n|
2

⌋
+ 1

connected components, the preimage µ−1
(
An

+

)
, would have⌊
|n|
2

⌋
+ 1

connected components were A3 and B3 commute. Thus first we fix A1 ∈ An
+. Now recall that the⌊

|n|
2

⌋
+ 1

connected components which arise from this fixed point stratum set

{A1} × F+
A1

=
{
A1

}
×

{
(B1, A2, B2, A3, B3) ∈ SU(2)5 :

3∏
i=1

[
Ai, Bi

]
= I,

(
[A3, B3]A1

)n
= I

}
are parameterized by that second relation, which corresponds to the stratification of the elements
of SU(2) whose n-th power is equal to the identity, according to their conjugacy classes. We saw
this in the proof of a previous lemma that

[
A3, B3

]
A1 ∈

⌊
|n|
2

⌋⋃
k=0

D+
k

where

D+
k :=

{
Udiag

(
e

i2πk
|n| , e

−i2πk
|n|

)
U−1 : U ∈ SU(2)

}
By assumption (A1)

n = I, thus there are two cases to consider when determining when our A3, B3

commutator equals the identity. The first case is when A1 = ±I. Note that this specific case is
dependent on the parity of n, however, due to the equivalence of X ∼ −X under conjugation, for
X ∈ SU(2), our argument is unaffected by this detail. Thus in this instance our relation becomes(

[A3, B3]A1

)n
=

(
± [A3, B3]

)n
= I

and so our commutator lies in the disjoint union of the conjugacy classes, that is

±
[
A3, B3

]
∈

⌊
|n|
2

⌋⋃
k=0

D+
k
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However, if this is the case then we know that there is only one conjugacy class which contains the
identity, namely the singleton conjugacy class {I}. Thus we must have that only in the connected
component corresponding to this conjugacy class can A3 and B3 commute. Next in the case
where A1 ̸= ±I, we leverage our assumption that (A1)

n = I to observe that there exists an

ℓ = 1, 2, . . . ,
⌊
|n|
2

⌋
such that

A1 ∈ D+
ℓ :=

{
Zdiag

(
e

i2πk
|n| , e

−i2πk
|n|

)
Z−1 : Z ∈ SU(2)

}
Note that as we previously mentioned, by our relation

[
A3, B3

]
A1 ∈

⌊
|n|
2

⌋⋃
k=0

D+
k

however, when A3 and B3 commute [
A3, B3

]
A1

simply becomes A1, which we know lies in the distinct conjugacy class D+
ℓ . Since our conjugacy

classes are disjoint, A1 cannot lie in any of the other conjugacy classes and so only in D+
ℓ can A3

and B3 commute. Therefore we must have that only in the corresponding connected component of
this conjugacy class, A3 and B3 commute. Hence we are done. □

Next we will prove the analogous result for µ−1
(
An

−
)
.

Lemma 17. For every n ∈ Z \ {0}, the preimage

µ−1
(
An

−
)
=

⋃
A1∈An

−

{A1} × F−
A1

has ⌊
|n| − 1

2

⌋
+ 1

connected components in which A3 and B3 commute.

Proof. We begin by noting that it suffices to show that for each fixed point stratum set {A1}×F−
A1
,

in only one of its ⌊
|n| − 1

2

⌋
+ 1

connected components can A3 and B3 commute. It would then follow that in taking the union over
our parameter space, the characterization set An

−, which in a previous lemma we showed has⌊
|n| − 1

2

⌋
+ 1

connected components, the preimage µ−1
(
An

−
)
, would have⌊

|n| − 1

2

⌋
+ 1

connected components were A3 and B3 commute. Thus first we fix A1 ∈ An
−. Now recall that the⌊

|n| − 1

2

⌋
+ 1

connected components which arise from this fixed point stratum set

{A1} × F−
A1

=
{
A1

}
×

{
(B1, A2, B2, A3, B3) ∈ SU(2)5 :

3∏
i=1

[
Ai, Bi

]
= I,

(
[A3, B3]A1

)n
= −I

}
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are parameterized by that second relation, which corresponds to the stratification of the elements
of SU(2) whose n-th power is equal to the identity, according to their conjugacy classes. We saw
this in the proof of a previous lemma that

[
A3, B3

]
A1 ∈

⌊
|n|−1

2

⌋⋃
k=0

D−
k

where

D−
k :=

{
V diag

(
e

i(2k+1)π
|n| , e

−i(2k+1)π
|n|

)
V −1 : V ∈ SU(2)

}
By assumption (A1)

n = −I, thus there are two cases to consider when determining when our A3, B3

commutator equals the identity. The first case is when A1 = −I. Note that this specific case is
dependent on the parity of n, however, due to the equivalence of X ∼ −X under conjugation, for
X ∈ SU(2), our argument is unaffected by this detail. Thus in this instance our relation becomes(

[A3, B3]A1

)n
=

(
− [A3, B3]

)n
= −I

and so our commutator lies in the disjoint union of the conjugacy classes, that is

−
[
A3, B3

]
∈

⌊
|n|−1

2

⌋⋃
k=0

D−
k

However, if this is the case then we know that there is only one conjugacy class which contains
the identity, namely the singleton conjugacy class {−I}. Thus we must have that only in the
connected component corresponding to this conjugacy class can A3 and B3 commute. Next in the
case where A1 ̸= −I, we leverage our assumption that (A1)

n = −I to observe that there exists an

ℓ = 1, 2, . . . ,
⌊
|n|−1

2

⌋
such that

A1 ∈ D−
ℓ :=

{
Zdiag

(
e

i(2k+1)π
|n| , e

−i(2k+1)π
|n|

)
Z−1 : Z ∈ SU(2)

}
Note that as we previously mentioned, by our relation

[
A3, B3

]
A1 ∈

⌊
|n|−1

2

⌋⋃
k=0

D−
k

however, when A3 and B3 commute [
A3, B3

]
A1

simply becomes A1, which we know lies in the distinct conjugacy class D−
ℓ . Since our conjugacy

classes are disjoint, A1 cannot lie in any of the other conjugacy classes and so only in D−
ℓ can A3

and B3 commute. Therefore we must have that only in the corresponding connected component of
this conjugacy class, A3 and B3 commute. Hence we are done. □

We are now ready to state and prove our main result about the number of connected components of our fixed
point set.

Theorem 1. The fixed point set of the n-th power of Φ∗, has⌊
n2

2

⌋
+ 1

connected components.
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Proof. Fix n ∈ Z \ {0}. With

Fix
(
(Φn)∗

)
=

{
(Ai, Bi) ∈ SU(2)6 :

3∏
i=1

[
Ai, Bi

]
= I,

(
[A3, B3]A1

)n
=

(
A1

)n
,
[
(A1)

n, A3

]
= I,

[
(A1)

n, B3

]
= I

}
we begin by recalling that

Fix
(
(Φn)∗

)
= µ−1

(
An

̸±
)
∪

(
µ−1

(
An

+

)
∪ µ−1

(
An

−
))

which is equivalent to

Fix
(
(Φn)∗

)
=

⋃
A1∈An

̸±

{A1} × F ̸±
A1

∪
⋃

A′
1∈An

+

{A′
1} × F+

A′
1
∪

⋃
A′′

1∈An
−

{A′′
1} × F−

A′′
1

Now, by a previous lemma we know that the preimage over all A1 whose n-th power is non-central
in SU(2),

µ−1
(
An

̸±
)
=

⋃
A1∈An

̸±

{A1} × F ̸±
A1

has |n| connected components. By a previous lemma we know that the preimage over all A1 whose
n-th power is equal to the identity,

µ−1
(
An

+

)
=

⋃
A′

1∈An
+

{A′
1} × F+

A′
1

has (⌊
|n|
2

⌋
+ 1

)2

connected components. Finally, by a previous lemma we know that the preimage over all A1 whose
n-th power is equal to minus the identity,

µ−1
(
An

−
)
=

⋃
A′′

1∈An
−

{A′′
1} × F−

A′′
1

has (⌊
|n| − 1

2

⌋
+ 1

)2

connected components. With this, we note that⋃
A1∈An

̸±

{A1} × F ̸±
A1

∪
⋃

A′
1∈An

+

{A′
1} × F+

A′
1
∪

⋃
A′′

1∈An
−

{A′′
1} × F−

A′′
1

is by construction a disjoint union, as necessarily our A1 arguments, which parametrize each indi-
vidual fixed point stratum set, cannot agree. Therefore, we get an upper bound for the number of
connected components of our fixed point set by adding the number of connected components from
each respective preimage, that is, we get that our fixed point set has at most

|n|+
(⌊

|n|
2

⌋
+ 1

)2

+

(⌊
|n| − 1

2

⌋
+ 1

)2

connected components However, this is just an upper bound and in fact we claim that the actual
number of connected components for our fixed point set is much lower. To refine this upper bound
on the number of connected components of our fixed point set we will leverage the fact that the
closure of a connected set is connected and that if two connected sets intersect in their closure,
their union is connected. Thus with this it suffices to show that the intersection of the closures
of specific connected components, arising from fixed point stratum sets, are non-empty and thus
come together to form larger connected components. First, though, we need to identify which of
our connect components could potentially intersect in their closures. To do so let us consider our
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respective fixed point stratum sets for arbitrary, A1 ∈ An
̸±, A

′
1 ∈ An

+, and A
′′
1 ∈ An

−, as these give
rise to our connected components. By definition we have

{A1} × F ̸±
A1

=
{
A1

}
×
{
(B1, A2, B2, A3, B3) ∈ SU(2)5 :

[
A1, B1

]
=

[
A2, B2

]−1
,
[
A3, B3

]
=

[
(A1)

n, A3

]
=

[
(A1)

n, B3

]
= I

}
{A′

1} × F+
A′

1
=

{
A′

1

}
×

{
(B1, A2, B2, A3, B3) ∈ SU(2)5 :

3∏
i=1

[
Ai, Bi

]
= I,

(
[A3, B3]A

′
1

)n
= I

}

{A′′
1} × F−

A′′
1
=

{
A′′

1

}
×

{
(B1, A2, B2, A3, B3) ∈ SU(2)5 :

3∏
i=1

[
Ai, Bi

]
= I,

(
[A3, B3]A

′′
1

)n
= −I

}
Now since SU(2) is a compact Lie group, the closure of a set corresponds to the inclusion of all
points that can be approximated by sequences in the set. Since the relations on that set are
continuous, any limit point will satisfy those relations as well. Thus if the closures of two subsets
of SU(2) intersect, the points in the intersection must satisfy the relations of both sets. With this
we observe that for each fixed point stratum set in the union

µ−1
(
An

̸±
)
=

⋃
A1∈An

̸±

{
A1

}
×F ̸±

A1

we have that A3 and B3 commute. Therefore, if we consider the closures of the corresponding |n|
connected components, were the closures of any of the other connected components arising from
our other two respective collections of fixed point stratum sets to intersect, they too must satisfy
this relation. By two previous lemmas we know that

µ−1
(
An

+

)
=

⋃
A′

1∈An
+

{A′
1} × F+

A′
1

has ⌊
|n|
2

⌋
+ 1

connected components which satisfy this commutation relation and that

µ−1
(
An

−
)
=

⋃
A′′

1∈An
−

{A′′
1} × F−

A′′
1

has ⌊
|n| − 1

2

⌋
+ 1

connected components which satisfy this commutation relation. Moreover, these connected com-
ponents which correspond with when A3 and B3 commute, will be of the form

{A′
1} × F+

A′
1
=

{
A′

1

}
×
{
(B1, A2, B2, A3, B3) ∈ SU(2)5 :

[
A′

1, B1

]
=

[
A2, B2

]−1
,
[
A3, B3

]
= I

}
{A′′

1} × F−
A′′

1
=

{
A′′

1

}
×
{
(B1, A2, B2, A3, B3) ∈ SU(2)5 :

[
A′′

1, B1

]
=

[
A2, B2

]−1
,
[
A3, B3

]
= I

}
respectively. Note that it immediately follows that all relations for any fixed point stratum set

{A1}×F ̸±
A1

are satisfied, as by assumption, for each respective fixed point stratum set in the latter

preimages, we have by construction that
(
A′

1

)n
= I and

(
A′′

1

)n
= −I, thus trivially commute with

A3 and B3. It is important to note that these specific fixed point stratum sets decorate the gaps in
between the connected components of µ−1

(
An

̸±
)
in correspondence to their respective open intervals

along [0, π] We claim that all of the special connected components of our fixed point stratum sets,
that is the ones in which A3 and B3 commute, from our two respective preimages

µ−1
(
An

+

)
=

⋃
A′

1∈An
+

{A′
1} × F−

A′
1

and µ−1
(
An

−
)
=

⋃
A′′

1∈An
−

{A′′
1} × F−

A′′
1
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merge all of the connected components from our third preimage, to form one large connected
component. This claim may be verified through the previously mentioned intersection of the
closure argument. We will look at one case of this a note that we may repeat the argument to
sew together all of our target connected components. For this case, fix A1 ∈ SU(2). Then by
construction if

(
A1

)n
= I we have that µ−1

(
A1

) ∼= {A1} × F+
A1
. Define the path

A1(t) :
[
0, 1

]
−→ µ−1

(
SU(2)

)
where

(
A1(0)

)n
= I and

(
A1(t)

)n ̸= ±I for t ̸= 0. Now observe that

lim
t→0

µ−1
(
A1(t)

)
⊆ {A1(0)} × F+

A1

Thus the intersection of the closures of the two sets is non-empty and so their union is connected.
As we mentioned this is true for all of our special connected components of our fixed point stratum
sets, thus we can connect our (⌊

|n|
2

⌋
+ 1

)
+

(⌊
|n| − 1

2

⌋
+ 1

)
special connected components in µ−1

(
An

±
)
and |n| connected components of µ−1

(
An

̸±
)
, to form one

large connected component. This however is the extent of this merging of connected components
that we see from the general fixed point set. This is a result of the following. Suppose that for
some fixed A′

1 ∈ An
+, and A

′′
1 ∈ An

− we had that

{A′
1} × F+

A′
1
∩ {A′′

1} × F−
A′′

1
̸= ∅

that is the closures of at least one of the connected components from each of the⌊
|n|
2

⌋
+ 1 and

⌊
|n| − 1

2

⌋
+ 1

respective connected components from the fixed point stratum sets intersected. Then there would
exist an element (

Ã1, B̃1, Ã2, B̃2, Ã3, B̃3

)
∈ {A′

1} × F+
A′

1
∩ {A′′

1} × F−
A′′

1

such that Ã1, B̃1, Ã2, B̃2, Ã3 and B̃3 satisfy the relations of each respective set, that is

3∏
i=1

[
Ãi, B̃i

]
= I(

[Ã3, B̃3]Ã1

)n
= I(

[Ã3, B̃3]Ã1

)n
= −I

However, in SU(2) the n-th power of a matrix cannot simultaneously be equal to both the identity
and minus the identity. Therefore, there cannot exists an element(

Ã1, B̃1, Ã2, B̃2, Ã3, B̃3

)
∈ {A′

1} × F+
A′

1
∩ {A′′

1} × F−
A′′

1

and so we are unable to form larger connected components from any of the connected components of
each respective fixed point stratum set without the additional components from our other preimage.
Therefore the number of connected components in our fixed point set is

|n|+
(⌊

|n|
2

⌋
+ 1

)2
+
(⌊

|n|−1
2

⌋
+ 1

)2
−
(⌊

|n|
2

⌋
+ 1

)
−
(⌊

|n|−1
2

⌋
+ 1

)
− (|n| − 1)

which simplifies to ⌊
n2

2

⌋
+ 1

and so we are done. □
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5. Character Variety of Dehn Twists about Bounding Pairs

5.

5.1. Fixed Point Equations for
(
(Tγ1 ◦ T−1

γ2 )n
)∗
.

5.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

• On R(Σ, G) : A1 7→
(
[A3, B3]A1

)n
A1

(
A−1

1 [A3, B3]
−1

)n
B1 7→ B1

(
A1

)n(
A−1

1 [A3, B3]
−1

)n
A2 7→ A2

B2 7→ B2

A3 7→
(
[A3, B3]A1

)n
A3

(
A−1

1 [A3, B3]
−1

)n
B3 7→

(
[A3, B3]A1

)n
B3

(
A−1

1 [A3, B3]
−1

)n
• On R(Σ, G)/G : T−1A1T 7→

(
[A3, B3]A1

)n
A1

(
A−1

1 [A3, B3]
−1

)n
T−1B1T 7→ B1

(
A1

)n(
A−1

1 [A3, B3]
−1

)n
T−1A2T 7→ A2

T−1B2T 7→ B2

T−1A3T 7→
(
[A3, B3]A1

)n
A3

(
A−1

1 [A3, B3]
−1

)n
T−1B3T 7→

(
[A3, B3]A1

)n
B3

(
A−1

1 [A3, B3]
−1

)n

5.2. Computing Fix
(
(Φn)∗

)
.

5.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

• A1 :

TA1T
−1 =

(
[A3, B3]A1

)n
A1

(
A−1

1 [A3, B3]
−1

)n(
A−1

1 [A3, B3]
−1

)n
T A1 T

−1
(
[A3, B3]A1

)n
= A1(

A−1
1 [A3, B3]

−1
)n
TA1 = A1

(
A−1

1 [A3, B3]
−1

)n
T[

A1, (A
−1
1 [A3, B3]

−1)n T
]
= I

⇐⇒ (A−1
1 [A3, B3]

−1)n T ∈ CSU(2)(A1)

• B1 :

TB1T
−1 = B1

(
A1

)n(
A−1

1 [A3, B3]
−1

)n
B−1

1 TB1T
−1 =

(
A1

)n(
A−1

1 [A3, B3]
−1

)n
[B−1

1 , T ] =
(
A1

)n(
A−1

1 [A3, B3]
−1

)n(
A−1

1

)n
[B−1

1 , T ] =
(
A−1

1 [A3, B3]
−1

)n
• A2 :

TA2T
−1 = A2

TA2 = A2T[
A2, T

]
= I

⇐⇒ T ∈ CSU(2)(A2)
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• B2 :

TB2T
−1 = B2

TB2 = B2T[
B2, T

]
= I

⇐⇒ T ∈ CSU(2)(B2)

• A3 :

TA3T
−1 =

(
[A3, B3]A1

)n
A3

(
A−1

1 [A3, B3]
−1

)n(
A−1

1 [A3, B3]
−1

)n
T A3 T

−1
(
[A3, B3]A1

)n
= A3(

A−1
1 [A3, B3]

−1
)n
T A3 = A3

(
A−1

1 [A3, B3]
−1

)n
T[

A3, (A
−1
1 [A3, B3]

−1)n T
]
= I

⇐⇒
(
A−1

1 [A3, B3]
−1

)n
T ∈ CSU(2)(A3)

• B3 :

TB3T
−1 =

(
[A3, B3]A1

)n
B3

(
A−1

1 [A3, B3]
−1

)n(
A−1

1 [A3, B3]
−1

)n
T B3 T

−1
(
[A3, B3]A1

)n
= B3(

A−1
1 [A3, B3]

−1
)n
T B3 = B3

(
A−1

1 [A3, B3]
−1

)n
T[

B3, (A
−1
1 [A3, B3]

−1)n T
]
= I

⇐⇒
(
A−1

1 [A3, B3]
−1

)n
T ∈ CSU(2)(B3)

From these fixed point equations we may observe that our fixed point set of the character variety is partitioned
into smaller fixed point stratum sets based on what T is in SU(2). Therefore, we will examine the possible values
of T in SU(2). To start if T is in the center of SU(2) then our fixed point equations simplify to those of our
representation variety, which we have already classified. Thus let us consider when T is a non-central element of
SU(2). Note that by our fixed point equations for A1, A3, andB3 we see that(

A−1
1 [A3, B3]

−1
)n
T

must be in the centralizer of each respective element. This gives rise to two cases, the first being that(
A−1

1 [A3, B3]
−1

)n
T = ±I

and the second that (
A−1

1 [A3, B3]
−1

)n
T ̸= ±I

In the latter case where
(
A−1

1 [A3, B3]
−1

)n
T is a non-central element in SU(2), we observe that since it lies in the

centralizers ofA1, A3, andB3 respectively, then equivalently, A1, A3, andB3 lie in the centralizer of
(
A−1

1 [A3, B3]
−1

)n
T

which in SU(2) we know to be a maximal torus. Recall that in SU(2) every maximal torus is abelian, hence,
A1, A3, andB3 must commute. However, if A3 and B3 commute then[

A3, B3

]
= I

With this information, let us re-evaluate our fixed point equations. First, for A1 we have

TA1T
−1 =

(
[A3, B3]A1

)n
A1

(
A−1

1 [A3, B3]
−1

)n
TA1T

−1 = A1

(
A1

)n−1
A1

(
A−1

1

)n
TA1T

−1 = A1

TA1 = A1T
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Thus we find that A1 commutes with T. Now, for B1 we see that

TB1T
−1 = B1

(
A1

)n(
A−1

1 [A3, B3]
−1

)n
TB1T

−1 = B1

(
A1

)n(
A−1

1

)n
TB1T

−1 = B1

TB1 = B1T

Thus again we find that B1 commutes with T. Since the fixed point equations for A2 and B2 are unaffected by
our new found commutativity, besides the fact that they now commute as our T is assumed to be non-central, we
will move on to A3 and B3. First, for A3 observe that

TA3T
−1 =

(
[A3, B3]A1

)n
A3

(
A−1

1 [A3, B3]
−1

)n
TA3T

−1 =
(
A1

)n
A3

(
A−1

1

)n
TA3T

−1 = A3

(
A1

)n(
A−1

1

)n
TA3T

−1 = A3

TA3 = A3T

note that from line 2 to line 3 we leverage the fact that A1 and A3 commute. From this we see that A3 commutes
with T. Finally, for B3 we observe that in a similar fashion to A3

TB3T
−1 =

(
[A3, B3]A1

)n
B3

(
A−1

1 [A3, B3]
−1

)n
TB3T

−1 =
(
A1

)n
B3

(
A−1

1

)n
TB3T

−1 = B3

(
A1

)n(
A−1

1

)n
TB3T

−1 = B3

TB3 = B3T

Thus we find that B3 commutes with T. Now we have shown that every argument commutes with T and by
assumption T is non-central in SU(2) thus A1, B1, A2, B2, A3 and B3 all lie in the same maximal torus and so they
commute. In the case where (

A−1
1 [A3, B3]

−1
)n
T = ±I

then we may again re-evaluate our fixed point equations. First, note that the fixed point equations forA1, A3, andB3

all reduce the trivial equation, and so we may disregard them. Next, for B1, we see that

TB1T
−1 = B1

(
A1

)n(
A−1

1 [A3, B3]
−1

)n
TB1 = B1

(
A1

)n(
A−1

1 [A3, B3]
−1

)n
T

TB1 = ±B1

(
A1

)n
B−1

1 TB1 = ±
(
A1

)n
Finally, for A2 and B2 they are unchanged by our new found relation and so we still have that both commute with
T and with each other as our T is assumed to be non-central. Therefore, we may express our fixed point set as
the union of these three separate cases, that is

Fix
(
(Φn)∗

)
cv

= F
(
(Φn)∗

)
rv

∪ F
(
(Φn)∗

)
̸± ∪ F

(
(Φn)∗

)
±

where

F
(
(Φn)∗

)
rv

=

{
(Ai, Bi) ∈ SU(2)6 :

3∏
i=1

[
Ai, Bi

]
= I,

(
[A3, B3]A1

)n
=

(
A1

)n
,
[
(A1)

n, A3

]
= I,

[
(A1)

n, B3

]
= I

}
our fixed point set of the representation variety,

F
(
(Φn)∗

)
̸± =

{
(Ai, Bi) ∈ SU(2)6 :

[
Ai, Aj

]
=

[
Ai, Bj

]
=

[
Bi, Bj

]
= I, 1 ≤ i, j ≤ 3

}



CONTENTS 63

our fixed point set when T is a non-central element of SU(2) and
(
A−1

1 [A3, B3]
−1

)n
T ̸= I, and finally

F
(
(Φn)∗

)
± =

{
(Ai, Bi) ∈ SU(2)6 :

[
A1, B1

]
=

[
A3, B3

]−1
,
[
A2, B2

]
= I, B−1

1 TB1 = ±
(
A1

)n}
our fixed point set when T is a non-central element of SU(2) and

(
A−1

1 [A3, B3]
−1

)n
T = ±I. Thus in order to

classify the connectedness of our fixed point set for the character variety, it suffices to determine the connectedness
of each respective fixed point stratum set in this union. First, as previously noted, F

(
(Φn)∗

)
rv

is just a copy of

our fixed point set for the representation variety, which we have shown has
⌊
|n|2
2

⌋
+1 connected components. Next

let us consider our fixed point set when T is a non-central element of SU(2) and
(
A−1

1 [A3, B3]
−1

)n
T ̸= I.

Lemma 18. F
(
(Φn)∗

)
̸± is connected for every n ∈ Z \ {0}

Proof. Fix n ∈ Z \ {0}. With

F
(
(Φn)∗

)
̸± =

{
(Ai, Bi) ∈ SU(2)6 :

[
Ai, Aj

]
=

[
Ai, Bj

]
=

[
Bi, Bj

]
= I, 1 ≤ i, j ≤ 3

}
we observe that this is just the set of commuting 6-tuples in SU(2)6. Recall that any two elements
of SU(2) commute if and only if they lie in the same maximal torus, which in SU(2) is conjugate
to the subgroup of diagonal matrices. Let MT denote a maximal torus in SU(2),

MT =

{(
eiθ 0
0 e−iθ

)
: θ ∈ [0, 2π)

}
Since A1, B2, A2, B2, A3, B3 commute, there exists g ∈ SU(2) such that

g A1g
−1, g B1g

−1, g A2g
−1, g B2g

−1, g A3g
−1, g B3g

−1 ∈ MT

This follows from the fact that all maximal tori in SU(2) are conjugate and every element is
contained in some maximal torus. Therefore, we have

F
(
(Φn)∗

)
̸± =

{
(Ai, Bi) ∈ SU(2)6 :

[
Ai, Aj

]
=

[
Ai, Bj

]
=

[
Bi, Bj

]
= I, 1 ≤ i, j ≤ 3

}
=

{
(g t1g

−1, g t2g
−1, g t3g

−1, g t4g
−1, g t5g

−1, g t6g
−1) : g ∈ SU(2), ti ∈ MT

}
Now, define the map

Ω : SU(2)×M6
T −→ F

(
(Φn)∗

)
̸±

by

Ω
(
g, (t1, t2, t3, t4, t5, t6)

)
=

(
g t1g

−1, g t2g
−1, g t3g

−1, g t4g
−1, g t5g

−1, g t6g
−1

)
.

Observe that the domain of the map, SU(2) × M6
T , is connected since SU(2) is connected, MT is

connected, and the finite product of connected spaces is connected. Therefore, it suffices to show
that Ω is continuous and surjective, as the image of a connected space under a continuous map is
connected. We begin by verifying the surjectivity of Ω. Let (a1, b1, a2, b2, a3, b3) ∈ F

(
(Φn)∗

)
̸±, then

there exists g ∈ SU(2) such that

g a1g
−1, g b1g

−1, g a2g
−1, g b2g

−1, g a3g
−1, g b3g

−1 ∈ MT

This follows from the fact that all maximal tori in SU(2) are conjugate and every element is
contained in some maximal torus. Now, if we set

t1 = g−1a1g, t2 = g−1b1g, t3 = g−1a2g t4 = g−1b2g, t5 = g−1a3g, t6 = g−1b3g

then by conjugacy of the maximal torus, every element of F
(
(Φn)∗

)
̸± lies in the image of Ω and so

the map is surjective. For the continuity of the map, we note that Ω is defined on group operations,
multiplication and inversion, which are smooth in SU(2), and so the map is continuous. Hence,
F
(
(Φn)∗

)
̸± is connected. □
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We have now classified the connectedness of two of our three fixed point stratum sets which partition our fixed
point set of the character variety. We now turn our attention to the final fixed point stratum set. However, before
we tackle the classification of this set lets first prove an identity that will help us in the proof.

Lemma 19. For any A1, B1 ∈ SU(2) and n ∈ Z \ {0},
(
[A1, B1]

−1A1

)n
= B1

(
A1

)n
B−1

1

Proof. We will proceed by induction. First fix A1, B1 ∈ SU(2) and consider the case where n = 1,
in this instance we have

[A1, B1]
−1A1 = B1A1B

−1
1 A−1

1 A1

= B1A1B
−1
1

and so our base case holds. Next, suppose that(
[A1, B1]

−1A1

)n
= B1

(
A1

)n
B−1

1

for some n ∈ Z \ {0}. Then, we want to show that for n+ 1 our relation holds, that is(
[A1, B1]

−1A1

)n+1
= B1

(
A1

)n+1
B−1

1

Now, by our induction hypothesis we have(
[A1, B1]

−1A1

)n
= B1

(
A1

)n
B−1

1

and so (
[A1, B1]

−1A1

)n+1
=

(
[A1, B1]

−1A1

)n(
[A1, B1

]−1
A1

)
= B1

(
A1

)n
B−1

1

(
[A1, B1

]−1
A1

)
= B1

(
A1

)n
B−1

1 B1A1B
−1
1 A−1

1 A1

= B1

(
A1

)n
A1B

−1
1

= B1

(
A1

)n+1
B−1

1

Hence, we are done. □

Now that we have proven this identity we are ready to tackle our final fixed point stratum set.

Lemma 20. F
(
(Φn)∗

)
± is connected for every n ∈ Z \ {0}

Proof. Fix n ∈ Z \ {0}. With

F
(
(Φn)∗

)
± =

{
(Ai, Bi) ∈ SU(2)6 :

[
A1, B1

]
=

[
A3, B3

]−1
,
[
A2, B2

]
= I, B−1

1 TB1 = ±
(
A1

)n}
we begin by observing that we may expressed our relation

B−1
1 TB1 = ±

(
A1

)n
as

B−1
1

(
[A1, B1]

−1A1

)n
B1 =

(
A1

)n
which by Lemma 2 is trivial since

B−1
1

(
[A1, B1]

−1A1

)n
B1 =

(
A1

)n
B−1

1 B1

(
A1

)n
B−1

1 B1 =
(
A1

)n
B−1

1 B1

(
A1

)n
B−1

1 B1 =
(
A1

)n(
A1

)n
=

(
A1

)n
Now the equality of the different relations follows from the assumption that(

A−1
1 [A3, B3]

−1
)n
T = ±I
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which gives us that

T = ±
(
(A−1

1 [A3, B3]
−1)n

)−1
= ±

(
[A3, B3]A1

)n
However, from our other relations we know that[

A3, B3

]
=

[
A1, B1

]−1

and so we may rewrite our T as

T = ±
(
[A1, B1]

−1A1

)n
Therefore, our derived relation

B−1
1 TB1 = ±

(
A1

)n
becomes

B−1
1

(
[A1, B1]

−1A1

)n
B1 =

(
A1

)n
where we can drop the ± sign as the parity of both sides of the equality are determined by the
parity of the assumed identity (

A−1
1 [A3, B3]

−1
)n
T = ±I

Therefore, our fixed point stratum set can be rewritten as

F
(
(Φn)∗

)
± =

{
(Ai, Bi) ∈ SU(2)6 :

[
A1, B1

]
=

[
A3, B3

]−1
,
[
A2, B2

]
= I

}
We now want to show that F

(
(Φn)∗

)
± is connected. We begin by noting that by our relations, we

know that A1 and B1 are essentially unconstrained in the fixed point stratum set if we define A3

and B3 based on our choices of A1 and B1. Therefore, we define the commutator map

c : SU(2)2 −→ SU(2)

given by (
X,Y

)
7−→

[
X,Y

]
Now if we consider the fiber over [A1, B1]

−1 observe that this gives us all of our possible values of
A3 and B3, that is

c−1
(
[A1, B1]

−1
)
=

{
(A3, B3) ∈ SU(2) :

[
A3, B3

]
=

[
A1, B1

]−1}
We know that the fibers of the commutator map of SU(2) are connected and so c−1

(
[A1, B1]

−1
)
is

connected. Next, by our relation involving A2 and B2 we know that the two must commute and
elements of SU(2) commute if and only if they lie in the same maximal torus, which in SU(2) is
conjugate to the subgroup of diagonal matrices. Let MT denote a maximal torus in SU(2),

MT =

{(
eiθ 0
0 e−iθ

)
: θ ∈ [0, 2π)

}
Since A2, B2 commute, there exists g ∈ SU(2) such that

g A2g
−1, g B2g

−1 ∈ MT

This follows from the fact that all maximal tori in SU(2) are conjugate and every element is
contained in some maximal torus. Recall that MT is connected in SU(2). Thus,

F
(
(Φn)∗

)
±
∼= SU(2)2 ×M2

T × c−1
(
[A1, B1]

−1
)

which is connected as the finite product of connected spaces is connected. □

We have now classified the connectedness of all three of our fixed point stratum sets. Thus our last step in order to
fully classify our fixed point set for the character variety is to determine how many distinct connected components
are left after taking the union of all such fixed point stratum sets.
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Theorem 2. The fixed point set of the n-th power of Φ∗, has⌊
n2

2

⌋
+ 1

connected components.

Proof. Fix n ∈ Z\{0}. We begin recalling that if the intersection of two connected sets is nonempty
then their union is connected. With this fact consider F

(
(Φn)∗

)
± and F

(
(Φn)∗

)
̸±. We have shown

the each respective set is connected for every n ∈ Z \ {0} and so we will examine their intersection.
Observe that if we take each argument of our 6-tuples in our respective sets to be the same element
in the center of SU(2) then our relations hold. Therefore we have(

I, I, I, I, I, I
)
,
(
− I,−I,−I,−I,−I,−I

)
∈ F

(
(Φn)∗

)
± ∩ F

(
(Φn)∗

)
̸±

and so our intersection is nonempty. Hence

F
(
(Φn)∗

)
± ∪ F

(
(Φn)∗

)
̸±

is connected. Next let us consider our fixed point set of the representation variety, specifically, the
end cap of our large connected component which corresponds to that which we pieced together in
Theorem 1. Note that this end cap, the fixed point stratum set

{I} × F+
I =

{
A′

1

}
×
{
(B1, A2, B2, A3, B3) ∈ SU(2)5 :

[
A2, B2

]
=

[
A3, B3

]−1
,
(
[A3, B3]

)n
= I

}
contains the 6-tuple (I, I, I, I, I, I). Therefore, we can connect our other two stratum of the fixed
point set of the character variety

F
(
(Φn)∗

)
± and F

(
(Φn)∗

)
̸±

to this set. Thus we get one connected component

{I} × F+
I ∪ F

(
(Φn)∗

)
± ∪ F

(
(Φn)∗

)
̸±

However, as we previously noted, {I} ×F+
I is just one of the two end caps of the larger connected

component in the fixed point set of the representation variety, thus

F
(
(Φn)∗

)
± and F

(
(Φn)∗

)
̸±

just get added to this component. Hence, we are left with the⌊
|n|2

2

⌋
+ 1

connected components of our fixed point set of the representation variety and so we are done. □

6. Dehn Twists about Simply Intersecting Curves

6.

• Tγ1 : α1 7→ β−1
1 β−1

3 α1

α2 7→ β−1
3 β−1

1 α2β1β3
α3 7→ β−1

3 β−1
1 α3

β1 7→ β1
β2 7→ β−1

3 β−1
1 β2β1β3

β3 7→ β3

• Tγ2 : α1 7→ β−1
1 β−1

2 α1

α2 7→ β−1
2 β−1

1 α2

α3 7→ β−1
1 β−1

2 α3β2β1

β1 7→ β1
β2 7→ β2
β3 7→ β−1

1 β−1
2 β3β2β1
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• T−1
γ1 : α1 7→ β3β1α1

α2 7→ β1β3α2β
−1
3 β−1

1
α3 7→ β1β3α3

β1 7→ β1
β2 7→ β1β3β2β

−1
3 β−1

1
β3 7→ β3

• T−1
γ2 : α1 7→ β2β1α1

α2 7→ β1β2α2

α3 7→ β2β1α3β
−1
1 β−1

2

β1 7→ β1
β2 7→ β2
β3 7→ β2β1β3β

−1
1 β−1

2

• Tγ1 ◦ Tγ2 ◦ T−1
γ1 ◦ T−1

γ2 : α1 7→ β−1
3 β−1

1 β−1
2 β1β3β

−1
1 β2β1α1

β1 7→ β1
α2 7→ [β1β

−1
3 β−1

1 , β−1
2 ]α2[β

−1
3 β−1

1 β−1
2 , β1β3β

−1
1 ]−1

β2 7→ [β−1
3 β−1

1 β−1
2 , β1β3β

−1
1 ]β2[β

−1
3 β−1

1 β−1
2 , β1β3β

−1
1 ]−1

α3 7→ [β−1
3 β−1

1 β−1
2 , β1β3β

−1
1 ]β2[β

−1
3 β−1

1 β−1
2 , β1β3β

−1
1 ]−1β1β

−1
3 β−1

1 β−1
2 β1β3β

−1
1 α3

[β2β1β3, β
−1
1 ]−1[β−1

3 β−1
1 β−1

2 , β1β3β
−1
1 ]−1

β3 7→ [β−1
3 β−1

1 β−1
2 , β1β3β

−1
1 ][β2β1β3, β

−1
1 ]β3[β2β1β3, β

−1
1 ]−1[β−1

3 β−1
1 β−1

2 , β1β3β
−1
1 ]−1

6.1. Fixed Point Equations for
(
Tγ1 ◦ Tγ2 ◦ T−1

γ1 ◦ T−1
γ2

)∗
:

6.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

• On R(Σ, G) : A1 7→ B−1
3 B−1

1 B−1
2 B1B3B

−1
1 B2B1A1

B1 7→ B1

A2 7→ [B1B
−1
3 B−1

1 , B−1
2 ]A2[B

−1
3 B−1

1 B−1
2 , B1B3B

−1
1 ]−1

B2 7→ [B−1
3 B−1

1 B−1
2 , B1B3B

−1
1 ]B2[B

−1
3 B−1

1 B−1
2 , B1B3B

−1
1 ]−1

A3 7→ [B−1
3 B−1

1 B−1
2 , B1B3B

−1
1 ]B2[B

−1
3 B−1

1 B−1
2 , B1B3B

−1
1 ]−1B1B

−1
3 B−1

1 B−1
2 B1B3B

−1
1 A3

[B2B1B3, B
−1
1 ]−1[B−1

3 B−1
1 B−1

2 , B1B3B
−1
1 ]−1

B3 7→ [B−1
3 B−1

1 B−1
2 , B1B3B

−1
1 ][B2B1B3, B

−1
1 ]B3[B2B1B3, B

−1
1 ]−1[B−1

3 B−1
1 B−1

2 , B1B3B
−1
1 ]−1

• On R(Σ, G)/G : T−1A1T 7→ B−1
3 B−1

1 B−1
2 B1B3B

−1
1 B2B1A1

T−1B1T 7→ B1

T−1A2T 7→ [B1B
−1
3 B−1

1 , B−1
2 ]A2[B

−1
3 B−1

1 B−1
2 , B1B3B

−1
1 ]−1

T−1B2T 7→ [B−1
3 B−1

1 B−1
2 , B1B3B

−1
1 ]B2[B

−1
3 B−1

1 B−1
2 , B1B3B

−1
1 ]−1

T−1A3T 7→ [B−1
3 B−1

1 B−1
2 , B1B3B

−1
1 ]B2[B

−1
3 B−1

1 B−1
2 , B1B3B

−1
1 ]−1B1B

−1
3 B−1

1 B−1
2 B1B3B

−1
1

A3[B2B1B3, B
−1
1 ]−1[B−1

3 B−1
1 B−1

2 , B1B3B
−1
1 ]−1

T−1B3T 7→ [B−1
3 B−1

1 B−1
2 , B1B3B

−1
1 ][B2B1B3, B

−1
1 ]B3[B2B1B3, B

−1
1 ]−1

[B−1
3 B−1

1 B−1
2 , B1B3B

−1
1 ]−1

6.2. Computing Φ = Tγ1 ◦ Tγ2 ◦ T−1
γ1 ◦ T−1

γ2 .
6.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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• Φ(α1) :

T−1
γ2 (α1) = β2β1α1

T−1
γ1

(
T−1
γ2 (α1)

)
= T−1

γ1 (β2β1α1)

= T−1
γ1 (β2)T

−1
γ1 (β1)T

−1
γ1 (α1)

= β1β3β2β
−1
3 β−1

1 β1β3β1α1

= β1β3β2β1α1

Tγ2
(
T−1
γ1

(
T−1
γ2 (α1)

))
= Tγ2(β1β3β2β1α1)

= Tγ2(β1)Tγ2(β3)Tγ2(β2)Tγ2(β1)Tγ2(α1)

= β1β
−1
1 β−1

2 β3β2β1β2β1β
−1
1 β−1

2 α1

= β−1
2 β3β2β1α1

Tγ1
(
Tγ2

(
T−1
γ1

(
T−1
γ2 (α1)

)))
= Tγ1(β

−1
2 β3β2β1α1)

= Tγ1(β
−1
2 )Tγ1(β3)Tγ1(β2)Tγ1(β1)Tγ1(α1)

=
(
Tγ1(β2)

)−1
Tγ1(β3)Tγ1(β2)Tγ1(β1)Tγ1(α1)

= β−1
3 β−1

1 β−1
2 β1β3β3β

−1
3 β−1

1 β2β1β3β1β
−1
1 β−1

3 α1

= β−1
3 β−1

1 β−1
2 β1β3β

−1
1 β2β1α1

Φ(α1) = β−1
3 β−1

1 β−1
2 β1β3β

−1
1 β2β1α1

• Φ(β1) :

T−1
γ2 (β1) = β1

T−1
γ1

(
T−1
γ2 (β1)

)
= T−1

γ1 (β1)

= β1

Tγ2
(
T−1
γ1

(
T−1
γ2 (β1)

))
= Tγ2(β1)

= β1

Tγ1
(
Tγ2

(
T−1
γ1

(
T−1
γ2 (β1)

)))
= Tγ1(β1)

= β1

Φ(β1) = β1
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• Φ(α2) :

T−1
γ2 (α2) = β1β2α2

T−1
γ1

(
T−1
γ2 (α2)

)
= T−1

γ1 (β1β2α2)

= T−1
γ1 (β1)T

−1
γ1 (β2)T

−1
γ1 (α2)

= β1β1β3β2β
−1
3 β−1

1 β1β3α2β
−1
3 β−1

1

= β1β1β3β2α2β
−1
3 β−1

1

Tγ2
(
T−1
γ1

(
T−1
γ2 (α2)

))
= Tγ2(β1β1β3β2α2β

−1
3 β−1

1 )

= Tγ2(β1)Tγ2(β1)Tγ2(β3)Tγ2(β2)Tγ2(α2)Tγ2(β
−1
3 )Tγ2(β

−1
1 )

= Tγ2(β1)Tγ2(β1)Tγ2(β3)Tγ2(β2)Tγ2(α2)
(
Tγ2(β3)

)−1(
Tγ2(β1)

)−1

= β1β1β
−1
1 β−1

2 β3β2β1β2β
−1
2 β−1

1 α2β
−1
1 β−1

2 β−1
3 β2β1β

−1
1

= β1β
−1
2 β3β2α2β

−1
1 β−1

2 β−1
3 β2

Tγ1
(
Tγ2

(
T−1
γ1

(
T−1
γ2 (α2)

)))
= Tγ1(β1β

−1
2 β3β2α2β

−1
1 β−1

2 β−1
3 β2)

= Tγ1(β1)Tγ1(β
−1
2 )Tγ1(β3)Tγ1(β2)Tγ1(α2)Tγ1(β

−1
1 )Tγ1(β

−1
2 )Tγ1(β

−1
3 )Tγ1(β2)

= Tγ1(β1)
(
Tγ1(β2)

)−1
Tγ1(β3)Tγ1(β2)Tγ1(α2)

(
Tγ1(β1)

)−1(
Tγ1(β2)

)−1(
Tγ1(β3)

)−1
Tγ1(β2)

= β1β
−1
3 β−1

1 β−1
2 β1β3β3β

−1
3 β−1

1 β2β1β3β
−1
3 β−1

1 α2β1β3β
−1
1 β−1

3 β−1
1 β−1

2 β1β3β
−1
3 β−1

3 β−1
1 β2β1β3

= β1β
−1
3 β−1

1 β−1
2 β1β3β

−1
1 β2α2β1β3β

−1
1 β−1

3 β−1
1 β−1

2 β1β
−1
3 β−1

1 β2β1β3

= [β1β
−1
3 β−1

1 , β−1
2 ]α2[β1β3β

−1
1 , β−1

3 β−1
1 β−1

2 ]

= [β1β
−1
3 β−1

1 , β−1
2 ]α2[β

−1
3 β−1

1 β−1
2 , β1β3β

−1
1 ]−1

Φ(α2) = [β1β
−1
3 β−1

1 , β−1
2 ]α2[β

−1
3 β−1

1 β−1
2 , β1β3β

−1
1 ]−1

• Φ(β2) :

T−1
γ2 (β2) = β2

T−1
γ1

(
T−1
γ2 (β2)

)
= T−1

γ1 (β2)

= β1β3β2β
−1
3 β−1

1

Tγ2
(
T−1
γ1

(
T−1
γ2 (β2)

))
= Tγ2(β1β3β2β

−1
3 β−1

1 )

= Tγ2(β1)Tγ2(β3)Tγ2(β2)Tγ2(β
−1
3 )Tγ2(β

−1
1 )

= Tγ2(β1)Tγ2(β3)Tγ2(β2)
(
Tγ2(β3)

)−1(
Tγ2(β1)

)−1

= β1β
−1
1 β−1

2 β3β2β1β2β
−1
1 β−1

2 β−1
3 β2β1β

−1
1

= β−1
2 β3β2β1β2β

−1
1 β−1

2 β−1
3 β2

Tγ1
(
Tγ2

(
T−1
γ1

(
T−1
γ2 (β2)

)))
= Tγ1(β

−1
2 β3β2β1β2β

−1
1 β−1

2 β−1
3 β2)

= Tγ1(β
−1
2 )Tγ1(β3)Tγ1(β2)Tγ1(β1)Tγ1(β2)Tγ1(β

−1
1 )Tγ1(β

−1
2 )Tγ1(β

−1
3 )Tγ1(β2)

=
(
Tγ1(β2)

)−1
Tγ1(β3)Tγ1(β2)Tγ1(β1)Tγ1(β2)

(
Tγ1(β1)

)−1(
Tγ1(β2)

)−1(
Tγ1(β3)

)−1
Tγ1(β2)

= β−1
3 β−1

1 β−1
2 β1β3β3β

−1
3 β−1

1 β2β1β3β1β
−1
3 β−1

1 β2β1β3β
−1
1 β−1

3 β−1
1 β−1

2 β1β3β
−1
3 β−1

3 β−1
1 β2β1β3

= β−1
3 β−1

1 β−1
2 β1β3β

−1
1 β2β1β3β1β

−1
3 β−1

1 β2β1β3β
−1
1 β−1

3 β−1
1 β−1

2 β1β
−1
3 β−1

1 β2β1β3

= [β−1
3 β−1

1 β−1
2 , β1β3β

−1
1 ]β2[β1β3β

−1
1 , β−1

3 β−1
1 β−1

2 ]

= [β−1
3 β−1

1 β−1
2 , β1β3β

−1
1 ]β2[β

−1
3 β−1

1 β−1
2 , β1β3β

−1
1 ]−1
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Φ(β2) = [β−1
3 β−1

1 β−1
2 , β1β3β

−1
1 ]β2[β

−1
3 β−1

1 β−1
2 , β1β3β

−1
1 ]−1

• Φ(α3) :

T−1
γ2 (α3) = β2β1α3β

−1
1 β−1

2

T−1
γ1

(
T−1
γ2 (α3)

)
= T−1

γ1 (β2β1α3β
−1
1 β−1

2 )

= T−1
γ1 (β2)T

−1
γ1 (β1)T

−1
γ1 (α3)T

−1
γ1 (β−1

1 )T−1
γ1 (β−1

2 )

= T−1
γ1 (β2)T

−1
γ1 (β1)T

−1
γ1 (α3)

(
T−1
γ1 (β1)

)−1(
T−1
γ1 (β2)

)−1

= β1β3β2β
−1
3 β−1

1 β1β1β3α3β
−1
1 β1β3β

−1
2 β−1

3 β−1
1

= β1β3β2β
−1
3 β1β3α3β3β

−1
2 β−1

3 β−1
1

Tγ2
(
T−1
γ1

(
T−1
γ2 (α3)

))
= Tγ2(β1β3β2β

−1
3 β1β3α3β3β

−1
2 β−1

3 β−1
1 )

= Tγ2(β1)Tγ2(β3)Tγ2(β2)Tγ2(β
−1
3 )Tγ2(β1)Tγ2(β3)Tγ2(α3)Tγ2(β3)Tγ2(β

−1
2 )Tγ2(β

−1
3 )Tγ2(β

−1
1 )

= Tγ2(β1)Tγ2(β3)Tγ2(β2)
(
Tγ2(β3)

)−1
Tγ2(β1)Tγ2(β3)Tγ2(α3)Tγ2(β3)

(
Tγ2(β2)

)−1(
Tγ2(β3)

)−1(
Tγ2(β1)

)−1

= β1β
−1
1 β−1

2 β3β2β1β2β
−1
1 β−1

2 β−1
3 β2β1β1β

−1
1 β−1

2 β3β2β1β
−1
1 β−1

2 α3β2β1β
−1
1 β−1

2 β3β2β1β
−1
2 β−1

1

β−1
2 β−1

3 β2β1β
−1
1

= β−1
2 β3β2β1β2β

−1
1 β−1

2 β−1
3 β2β1β

−1
2 β3α3β3β2β1β

−1
2 β−1

1 β−1
2 β−1

3 β2

Tγ1
(
Tγ2

(
T−1
γ1

(
T−1
γ2 (α3)

)))
= Tγ1(β

−1
2 β3β2β1β2β

−1
1 β−1

2 β−1
3 β2β1β

−1
2 β3α3β3β2β1β

−1
2 β−1

1 β−1
2 β−1

3 β2)

= Tγ1(β
−1
2 )Tγ1(β3)Tγ1(β2)Tγ1(β1)Tγ1(β2)Tγ1(β

−1
1 )Tγ1(β

−1
2 )Tγ1(β

−1
3 )Tγ1(β2)Tγ1(β1)Tγ1(β

−1
2 )

Tγ1(β3)Tγ1(α3)Tγ1(β3)Tγ1(β2)Tγ1(β1)Tγ1(β
−1
2 )Tγ1(β

−1
1 )Tγ1(β

−1
2 )Tγ1(β

−1
3 )Tγ1(β2)

=
(
Tγ1(β2)

)−1
Tγ1(β3)Tγ1(β2)Tγ1(β1)Tγ1(β2)

(
Tγ1(β1)

)−1(
Tγ1(β2)

)−1(
Tγ1(β3)

)−1
Tγ1(β2)

Tγ1(β1)
(
Tγ1(β2)

)−1
Tγ1(β3)Tγ1(α3)Tγ1(β3)Tγ1(β2)Tγ1(β1)

(
Tγ1(β2)

)−1(
Tγ1(β1)

)−1(
Tγ1(β2)

)−1(
Tγ1(β3)

)−1
Tγ1(β2)

= β−1
3 β−1

1 β−1
2 β1β3β3β

−1
3 β−1

1 β2β1β3β1β
−1
3 β−1

1 β2β1β3β
−1
1 β−1

3 β−1
1 β−1

2 β1β3β
−1
3 β−1

3 β−1
1 β2β1β3

β1β
−1
3 β−1

1 β−1
2 β1β3β3β

−1
3 β−1

1 α3β3β
−1
3 β−1

1 β2β1β3β1β
−1
3 β−1

1 β−1
2 β1β3β

−1
1 β−1

3 β−1
1 β−1

2 β1β3β
−1
3

β−1
3 β−1

1 β2β1β3

= β−1
3 β−1

1 β−1
2 β1β3β

−1
1 β2β1β3β1β

−1
3 β−1

1 β2β1β3β
−1
1 β−1

3 β−1
1 β−1

2 β1β
−1
3 β−1

1 β2β1β3β1β
−1
3 β−1

1 β−1
2

β1β3β
−1
1 α3β

−1
1 β2β1β3β1β

−1
3 β−1

1 β−1
2 β1β3β

−1
1 β−1

3 β−1
1 β−1

2 β1β
−1
3 β−1

1 β2β1β3

= [β−1
3 β−1

1 β−1
2 , β1β3β

−1
1 ]β2[β1β3β

−1
1 , β−1

3 β−1
1 β−1

2 ]β1β
−1
3 β−1

1 β−1
2 β1β3β

−1
1 α3

[β−1
1 , β2β1β3][β1β3β

−1
1 , β−1

3 β−1
1 β−1

2 ]

= [β−1
3 β−1

1 β−1
2 , β1β3β

−1
1 ]β2[β

−1
3 β−1

1 β−1
2 , β1β3β

−1
1 ]−1β1β

−1
3 β−1

1 β−1
2 β1β3β

−1
1 α3

[β2β1β3, β
−1
1 ]−1[β−1

3 β−1
1 β−1

2 , β1β3β
−1
1 ]−1

Φ(α3) = [β−1
3 β−1

1 β−1
2 , β1β3β

−1
1 ]β2[β

−1
3 β−1

1 β−1
2 , β1β3β

−1
1 ]−1β1β

−1
3 β−1

1 β−1
2 β1β3β

−1
1 α3

[β2β1β3, β
−1
1 ]−1[β−1

3 β−1
1 β−1

2 , β1β3β
−1
1 ]−1



CONTENTS 71

• Φ(β3) :

T−1
γ2 (β3) = β2β1β3β

−1
1 β−1

2

T−1
γ1

(
T−1
γ2 (β3)

)
= T−1

γ1 (β2β1β3β
−1
1 β−1

2 )

= T−1
γ1 (β2)T

−1
γ1 (β1)T

−1
γ1 (β3)T

−1
γ1 (β−1

1 )T−1
γ1 (β−1

2 )

= T−1
γ1 (β2)T

−1
γ1 (β1)T

−1
γ1 (β3)

(
T−1
γ1 (β1)

)−1(
T−1
γ1 (β2)

)−1

= β1β3β2β
−1
3 β−1

1 β1β3β
−1
1 β1β3β

−1
2 β−1

3 β−1
1

= β1β3β2β3β
−1
2 β−1

3 β−1
1

Tγ2
(
T−1
γ1

(
T−1
γ2 (β3)

))
= Tγ2(β1β3β2β3β

−1
2 β−1

3 β−1
1 )

= Tγ2(β1)Tγ2(β3)Tγ2(β2)Tγ2(β3)Tγ2(β
−1
2 )Tγ2(β

−1
3 )Tγ2(β

−1
1 )

= Tγ2(β1)Tγ2(β3)Tγ2(β2)Tγ2(β3)
(
Tγ2(β2)

)−1(
Tγ2(β3)

)−1(
Tγ2(β1)

)−1

= β1β
−1
1 β−1

2 β3β2β1β2β
−1
1 β−1

2 β3β2β1β
−1
2 β−1

1 β−1
2 β−1

3 β2β1β
−1
1

= β−1
2 β3β2β1β2β

−1
1 β−1

2 β3β2β1β
−1
2 β−1

1 β−1
2 β−1

3 β2

Tγ1
(
Tγ2

(
T−1
γ1

(
T−1
γ2 (β3)

)))
= Tγ1(β

−1
2 β3β2β1β2β

−1
1 β−1

2 β3β2β1β
−1
2 β−1

1 β−1
2 β−1

3 β2)

= Tγ1(β
−1
2 )Tγ1(β3)Tγ1(β2)Tγ1(β1)Tγ1(β2)Tγ1(β

−1
1 )Tγ1(β

−1
2 )Tγ1(β3)Tγ1(β2)Tγ1(β1)Tγ1(β

−1
2 )

Tγ1(β
−1
1 )Tγ1(β

−1
2 )Tγ1(β

−1
3 )Tγ1(β2)

=
(
Tγ1(β2)

)−1
Tγ1(β3)Tγ1(β2)Tγ1(β1)Tγ1(β2)

(
Tγ1(β1)

)−1(
Tγ1(β2)

)−1
Tγ1(β3)Tγ1(β2)Tγ1(β1)(

Tγ1(β2)
)−1(

Tγ1(β1)
)−1(

Tγ1(β2)
)−1(

Tγ1(β3)
)−1

Tγ1(β2)

= β−1
3 β−1

1 β−1
2 β1β3β3β

−1
3 β−1

1 β2β1β3β1β
−1
3 β−1

1 β2β1β3β
−1
1 β−1

3 β−1
1 β−1

2 β1β3β3β
−1
3 β−1

1 β2β1β3β1

β−1
3 β−1

1 β−1
2 β1β3β

−1
1 β−1

3 β−1
1 β−1

2 β1β3β
−1
3 β−1

3 β−1
1 β2β1β3

= β−1
3 β−1

1 β−1
2 β1β3β

−1
1 β2β1β3β1β

−1
3 β−1

1 β2β1β3β
−1
1 β−1

3 β−1
1 β−1

2 β1β3

β−1
1 β2β1β3β1β

−1
3 β−1

1 β−1
2 β1β3β

−1
1 β−1

3 β−1
1 β−1

2 β1β
−1
3 β−1

1 β2β1β3

= [β−1
3 β−1

1 β−1
2 , β1β3β

−1
1 ][β2β1β3, β

−1
1 ]β3[β

−1
1 , β2β1β3][β

−1
3 β−1

1 β−1
2 , β1β3β

−1
1 ]−1

= [β−1
3 β−1

1 β−1
2 , β1β3β

−1
1 ][β2β1β3, β

−1
1 ]β3[β2β1β3, β

−1
1 ]−1[β−1

3 β−1
1 β−1

2 , β1β3β
−1
1 ]−1

Φ(β3) = [β−1
3 β−1

1 β−1
2 , β1β3β

−1
1 ][β2β1β3, β

−1
1 ]β3[β2β1β3, β

−1
1 ]−1[β−1

3 β−1
1 β−1

2 , β1β3β
−1
1 ]−1

6.3. Checking Relation.
6.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

• Tγ1 : [
β−1
1 β−1

3 α1, β1
]
β−1
3 β−1

1

[
α2, β2

]
β1β3

[
β−1
3 β−1

1 α3, β3
]

β−1
1 β−1

3 α1β1α
−1
1 β3β1β

−1
1 β−1

3 β−1
1

[
α2, β2

]
β1β3β

−1
3 β−1

1 α3β3α
−1
3 β1β3β

−1
3

β−1
1 β−1

3 α1β1α
−1
1 β−1

1

[
α2, β2

]
α3β3α

−1
3 β−1

3 β3β1

β−1
1 β−1

3

[
α1, β1

][
α2, β2

]
α3β3α

−1
3 β−1

3 β3β1

β−1
1 β−1

3

[
α1, β1

][
α2, β2

][
α3, β3

]
β3β1

β−1
1 β−1

3 β3β1

1
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• Tγ2 : [
β−1
1 β−1

2 α1, β1
][
β−1
2 β−1

1 α2, β2
]
β−1
1 β−1

2

[
α3, β3

]
β2β1

β−1
1 β−1

2 α1β1α
−1
1 β2β1β

−1
1 β−1

2 β−1
1 α2β2α

−1
2 β1β2β

−1
2 β−1

1 β−1
2

[
α3, β3

]
β2β1

β−1
1 β−1

2 α1β1α
−1
1 β−1

1 α2β2α
−1
2 β−1

2

[
α3, β3

]
β2β1

β−1
1 β−1

2

[
α1, β1

][
α2, β2

][
α3, β3

]
β2β1

β−1
1 β−1

2 β2β1

1

• T−1
γ1 : [

β3β1α1, β1
]
β1β3

[
α2, β2

]
β−1
3 β−1

1

[
β1β3α3, β3

]
β3β1α1β1α

−1
1 β−1

1 β−1
3 β−1

1 β1β3
[
α2, β2

]
β−1
3 β−1

1 β1β3α3β3α
−1
3 β−1

3 β−1
1 β−1

3

β3β1α1β1α
−1
1 β−1

1

[
α2, β2

]
α3β3α

−1
3 β−1

3 β−1
1 β−1

3

β3β1
[
α1, β1

][
α2, β2

][
α3, β3

]
β−1
1 β−1

3

β3β1β
−1
1 β−1

3

1

• T−1
γ2 : [

β2β1α1, β1
][
β1β2α2, β2

]
β2β1

[
α3, β3

]
β−1
1 β−1

2

β2β1α1β1α
−1
1 β−1

1 β−1
2 β−1

1 β1β2α2β2α
−1
2 β−1

2 β−1
1 β−1

2 β2β1
[
α3, β3

]
β−1
1 β−1

2

β2β1α1β1α
−1
1 β−1

1 α2β2α
−1
2 β−1

2

[
α3, β3

]
β−1
1 β−1

2

β2β1
[
α1, β1

][
α2, β2

][
α3, β3

]
β−1
1 β−1

2

β2β1β
−1
1 β−1

2

1

• Tγ1 ◦ Tγ2 ◦ T−1
γ1 ◦ T−1

γ2 : [
Φ(α1),Φ(β1)

][
Φ(α2),Φ(β2)

][
Φ(α1),Φ(β1)

]
Let us proceed by first computing each respective commutator in order to simplify our final commutations.

(1)

(i)
[
Φ(α1),Φ(β1)

]
(ii)

[
β−1
3 β−1

1 β−1
2 β1β3β

−1
1 β2β1α1, β1

]
(iii) β−1

3 β−1
1 β−1

2 β1β3β
−1
1 β2β1α1β1α

−1
1 β−1

1 β−1
2 β1β

−1
3 β−1

1 β2β1β3β
−1
1

(iv) β−1
3 β−1

1 β−1
2 β1β3β

−1
1 β2β1

[
α1, β1

]
β−1
2 β1β

−1
3 β−1

1 β2β1β3β
−1
1

(v) β−1
3 β−1

1 β−1
2 β1β3β

−1
1 β2β1

[
α1, β1

]
[β−1

2 , β1β
−1
3 β−1

1 ]

(vi) β−1
3 β−1

1 β−1
2 β1β3β

−1
1 β2β1

[
α1, β1

]
[β1β

−1
3 β−1

1 , β−1
2 ]−1
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(2)

(i)
[
Φ(α2),Φ(β2)

]
(ii)

[
[β1β

−1
3 β−1

1 , β−1
2 ]α2[β

−1
3 β−1

1 β−1
2 , β1β3β

−1
1 ]−1, [β−1

3 β−1
1 β−1

2 , β1β3β
−1
1 ]β2[β

−1
3 β−1

1 β−1
2 , β1β3β

−1
1 ]−1

]
(iii) [β1β

−1
3 β−1

1 , β−1
2 ]α2[β

−1
3 β−1

1 β−1
2 , β1β3β

−1
1 ]−1[β−1

3 β−1
1 β−1

2 , β1β3β
−1
1 ]β2

[β−1
3 β−1

1 β−1
2 , β1β3β

−1
1 ]−1[β−1

3 β−1
1 β−1

2 , β1β3β
−1
1 ]α−1

2

[β1β
−1
3 β−1

1 , β−1
2 ]−1[β−1

3 β−1
1 β−1

2 , β1β3β
−1
1 ]β−1

2 [β−1
3 β−1

1 β−1
2 , β1β3β

−1
1 ]−1

(iv) [β1β
−1
3 β−1

1 , β−1
2 ]α2β2α

−1
2 [β−1

2 , β1β
−1
3 β−1

1 ][β−1
3 β−1

1 β−1
2 , β1β3β

−1
1 ]β−1

2 [β−1
3 β−1

1 β−1
2 , β1β3β

−1
1 ]−1

(v) [β1β
−1
3 β−1

1 , β−1
2 ]α2β2α

−1
2 β−1

2 β1β
−1
3 β−1

1 β2β1β3β
−1
1 [β−1

3 β−1
1 β−1

2 , β1β3β
−1
1 ]β−1

2 [β−1
3 β−1

1 β−1
2 , β1β3β

−1
1 ]−1

(vi) [β1β
−1
3 β−1

1 , β−1
2 ]

[
α2, β2

]
β1β

−1
3 β−1

1 β2β1β3β
−1
1 [β−1

3 β−1
1 β−1

2 , β1β3β
−1
1 ]β−1

2 [β−1
3 β−1

1 β−1
2 , β1β3β

−1
1 ]−1

(3)

(i)
[
Φ(α3),Φ(β3)

]
(ii)

[
[β−1

3 β−1
1 β−1

2 , β1β3β
−1
1 ]β2[β

−1
3 β−1

1 β−1
2 , β1β3β

−1
1 ]−1β1β

−1
3 β−1

1 β−1
2 β1β3β

−1
1 α3[β2β1β3, β

−1
1 ]−1[β−1

3 β−1
1 β−1

2 , β1β3β
−1
1 ]−1,

[β−1
3 β−1

1 β−1
2 , β1β3β

−1
1 ][β2β1β3, β

−1
1 ]β3[β2β1β3, β

−1
1 ]−1[β−1

3 β−1
1 β−1

2 , β1β3β
−1
1 ]−1

]
(iii) [β−1

3 β−1
1 β−1

2 , β1β3β
−1
1 ]β2[β

−1
3 β−1

1 β−1
2 , β1β3β

−1
1 ]−1β1β

−1
3 β−1

1 β−1
2 β1β3β

−1
1 α3

[β2β1β3, β
−1
1 ]−1[β−1

3 β−1
1 β−1

2 , β1β3β
−1
1 ]−1[β−1

3 β−1
1 β−1

2 , β1β3β
−1
1 ][β2β1β3, β

−1
1 ]β3

[β2β1β3, β
−1
1 ]−1[β−1

3 β−1
1 β−1

2 , β1β3β
−1
1 ]−1[β−1

3 β−1
1 β−1

2 , β1β3β
−1
1 ][β2β1β3, β

−1
1 ]

α−1
3 β1β

−1
3 β−1

1 β2β1β3β
−1
1 [β−1

3 β−1
1 β−1

2 , β1β3β
−1
1 ]β−1

2

[β−1
3 β−1

1 β−1
2 , β1β3β

−1
1 ]−1[β−1

3 β−1
1 β−1

2 , β1β3β
−1
1 ][β2β1β3, β

−1
1 ]β−1

3 [β2β1β3, β
−1
1 ]−1[β−1

3 β−1
1 β−1

2 , β1β3β
−1
1 ]−1

(iv) [β−1
3 β−1

1 β−1
2 , β1β3β

−1
1 ]β2[β

−1
3 β−1

1 β−1
2 , β1β3β

−1
1 ]−1β1β

−1
3 β−1

1 β−1
2 β1β3β

−1
1 α3β3α

−1
3 β−1

3 β3

β1β
−1
3 β−1

1 β2β1β3β
−1
1 β−1

3 β−1
1 β−1

2 β1β3β
−1
1 β2β1β3β1β

−1
3 β−1

1 β−1
2

β2β1β3β
−1
1 β−1

3 β−1
1 β−1

2 β1β
−1
3 β−1

1 β2β1β3β1β
−1
3 β−1

1 β−1
2 β1β3β

−1
1 β−1

3 β−1
1 β−1

2 β1β
−1
3 β−1

1 β2β1β3

(v) [β−1
3 β−1

1 β−1
2 , β1β3β

−1
1 ]β2[β

−1
3 β−1

1 β−1
2 , β1β3β

−1
1 ]−1β1β

−1
3 β−1

1 β−1
2 β1β3β

−1
1

[
α3, β3

]
β3β

−1
3 β−1

1 β−1
2 β1β

−1
3 β−1

1 β2β1β3

(vi) [β−1
3 β−1

1 β−1
2 , β1β3β

−1
1 ]β2[β

−1
3 β−1

1 β−1
2 , β1β3β

−1
1 ]−1β1β

−1
3 β−1

1 β−1
2 β1β3β

−1
1

[
α3, β3

]
β−1
1 β−1

2 β1β
−1
3 β−1

1 β2β1β3

Now that we have computed each pairs commutator, let us compute the product in order to verify that
the relation holds:

– Φ := Tγ2 ◦ Tγ2 ◦ T−1
γ1 ◦ T−1

γ2 :

(i)
[
Φ(α1),Φ(β1)

][
Φ(α2),Φ(β2)

][
Φ(α1),Φ(β1)

]
(ii) β−1

3 β−1
1 β−1

2 β1β3β
−1
1 β2β1

[
α1, β1

]
[β1β

−1
3 β−1

1 , β−1
2 ]−1[β1β

−1
3 β−1

1 , β−1
2 ]

[
α2, β2

]
β1β

−1
3 β−1

1 β2β1β3β
−1
1

[β−1
3 β−1

1 β−1
2 , β1β3β

−1
1 ]β−1

2 [β−1
3 β−1

1 β−1
2 , β1β3β

−1
1 ]−1[β−1

3 β−1
1 β−1

2 , β1β3β
−1
1 ]β2[β

−1
3 β−1

1 β−1
2 , β1β3β

−1
1 ]−1

β1β
−1
3 β−1

1 β−1
2 β1β3β

−1
1

[
α3, β3

]
β−1
1 β−1

2 β1β
−1
3 β−1

1 β2β1β3

(iii) β−1
3 β−1

1 β−1
2 β1β3β

−1
1 β2β1

[
α1, β1

][
α2, β2

][
α3, β3

]
β−1
1 β−1

2 β1β
−1
3 β−1

1 β2β1β3

(iv) β−1
3 β−1

1 β−1
2 β1β3β

−1
1 β2β1β

−1
1 β−1

2 β1β
−1
3 β−1

1 β2β1β3

(v) 1
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6.4. Computing Fix(Φ∗).
6.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

• A1 :
A1 = B−1

3 B−1
1 B−1

2 B1B3B
−1
1 B2B1A1

⇐⇒ B−1
3 B−1

1 B−1
2 B1B3B

−1
1 B2B1 = I

⇐⇒ B1B3B
−1
1 = B2B1B3B

−1
1 B−1

2 and B−1
3 B−1

1 B−1
2 = B−1

1 B−1
2 B1B

−1
3 B−1

1

• A2 :
A2 = [B1B

−1
3 B−1

1 , B−1
2 ]A2[B

−1
3 B−1

1 B−1
2 , B1B3B

−1
1 ]−1

⇐⇒ A−1
2 [B1B

−1
3 B−1

1 , B−1
2 ]−1A2 = [B−1

3 B−1
1 B−1

2 , B1B3B
−1
1 ]−1

⇐⇒ A2[B1B
−1
3 B−1

1 , B−1
2 ]A−1

2 = [B−1
3 B−1

1 B−1
2 , B1B3B

−1
1 ]

• B2 :
B2 = [B−1

3 B−1
1 B−1

2 , B1B3B
−1
1 ]B2[B

−1
3 B−1

1 B−1
2 , B1B3B

−1
1 ]−1

⇐⇒
[
[B−1

3 B−1
1 B−1

2 , B1B3B
−1
1 ], B2

]
= I

• A3 :

A3 = [B−1
3 B−1

1 B−1
2 , B1B3B

−1
1 ]B2[B

−1
3 B−1

1 B−1
2 , B1B3B

−1
1 ]−1B1B

−1
3 B−1

1 B−1
2 B1B3B

−1
1

A3[B2B1B3, B
−1
1 ]−1[B−1

3 B−1
1 B−1

2 , B1B3B
−1
1 ]−1

A3 = B2B1B
−1
3 B−1

1 B−1
2 B1B3B

−1
1 A3[B2B1B3, B

−1
1 ]−1[B−1

3 B−1
1 B−1

2 , B1B3B
−1
1 ]−1

A3 = B2B1B
−1
3 B−1

1 B−1
2 B2B1B3B

−1
1 B−1

2 A3[B2B1B3, B
−1
1 ]−1[B−1

3 B−1
1 B−1

2 , B1B3B
−1
1 ]−1

A3 = B2B1B
−1
3 B−1

1 B−1
2 B2B1B3B

−1
1 B−1

2 A3[B2B1B3, B
−1
1 ]−1[B−1

3 B−1
1 B−1

2 , B1B3B
−1
1 ]−1

A3 = A3[B2B1B3, B
−1
1 ]−1[B−1

3 B−1
1 B−1

2 , B1B3B
−1
1 ]−1

⇐⇒ [B2B1B3, B
−1
1 ]−1[B−1

3 B−1
1 B−1

2 , B1B3B
−1
1 ]−1 = I

⇐⇒ [B−1
3 B−1

1 B−1
2 , B1B3B

−1
1 ][B2B1B3, B

−1
1 ] = I

• B3 :

B3 = [B−1
3 B−1

1 B−1
2 , B1B3B

−1
1 ][B2B1B3, B

−1
1 ]B3[B2B1B3, B

−1
1 ]−1[B−1

3 B−1
1 B−1

2 , B1B3B
−1
1 ]−1

= B3
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1 Character Varieties of Mapping Tori
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This first section on mapping tori was written early on in the summer to help us better understand the lecture
material Dr. Duncan presented at the beginning of the summer. Some of the questions/unproven claims may
be outdated with our accumulated knowledge.

1.1 Reducing R(Σϕ, G) to a fixed point set

Let Σ be an orientable, connected, closed (in the manifold sense) 2-manifold. Let ϕ : Σ → Σ be a homeomorphism.
Define

Σϕ :=
[0, 1]× Σ

∼
, (1)

endowed with the quotient topology of the product [0, 1]× Σ (which has the box topology), where ∼ is given by{
(t, x) ∼ (s, y) if t = 0, x = ϕ(y), s = 1,

(t, x) ∼ (s, y) if t = s and x = y.

For a basepoint x0 ∈ Σ, the continuous map ϕ induces a homomorphism (the push forward)

ϕ∗ : π1(Σ, x0) → π1(Σ, x0). (2)

Are we allowed to say Σ is path connected? If so, we drop the base-point from the notation. I am aware that an open
connected subset of Euclidean space is path-connected, but I’m not sure this is what we have.

Claim: ∃g ∈ Z≥0 and αi, βi ∈ π1(Σ) such that

π1(Σ) ∼= ⟨α1, β1, ..., αg, βg|
g∏

i=1

[αi, βi] ⟩. (3)

Supposedly the proof of this claim comes from the classification of surfaces and how π1 behaves under connected sum
modulo homotopy, afforded to us by Seifert van Kampen.

Claim: The map ι : Σ → Σϕ given by x 7→ [(0, x)]∼ is a continuous injection. Therefore, π1(Σ) can
be embedded into π1(Σϕ). Proof: Let (0, x) ∼ (0, y). By definition of the equivalence relation, we must have
0 = 0 and x = y since the first entries in the order pair equal. By the above, we get an induced homomorphism
ι∗ : π1(Σ) → π1(Σϕ). It is injective because Look up what Munkres says about this.

Claim: ∃τ ∈ π1(Σ) such that

π1(Σϕ)

∼=⟨ι∗(τ), ι∗(α1), ι∗(β1), ..., ι∗(αg), ι∗(βg)|
g∏

i=1

[ι∗(αi), ι∗(βi)], ι∗(ϕ∗(αj)) = ι∗(τ)
−1ι∗(αj)ι∗(τ), ι∗(ϕ∗(βj)) = ι∗(τ)

−1ι∗(βj)ι∗(τ)⟩.

(4)

Proof: Supposedly the HNN extension.
For ease of notation, denote for all j = 1, 2, ..., g

ϕ∗(αj) = Qj1(α1, α2, ..., βg), (5)

ϕ∗(βj) = Qj2(α1, α2, ..., βg), (6)

in which we view each Qkj a monomial in 2g indeterminates of an arbitrary group. is there a better way to specify
this? We’re not dealing with a ring anywhere, so...

From ι defined above, we get the map

R(Σϕ, G) → R(Σ, G) (7)

ρ 7→ ρ ◦ ι.
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Claim: This map is neither necessarily surjective nor injective.
Claim: If π ∼= ⟨a1, ..., an|R1(a1, ..., an), ..., Rk(a1, ..., an)⟩ and with the discrete topology, G is a topo-

logical group, and R(π,G) has the compact-open topology, then the map F : R(π,G) → Gn given by
ρ 7→ (ρ(a1), ..., ρ(an)), Ai = ρ(ai), is a homeomorphism onto its image of im(F ) = {(A1, ..., An) ∈ Gn :
R1(A1, ..., An) = e, ..., Rk(A1, ..., An) = e}. Also, the compact-open topology is the coarsest topology such
that F is continuous and the finest so that it is open.

Define pullback (from Duncan HW 2): Let f : π → π′ be a group homomorphism of finitely presented
groups. Define f∗ : R(π′, G) → R(π,G) by ρ 7→ ρ ◦ f .

By using identification with R(π1(Σϕ), G) and R(π1(Σ), G) mentioned in the ereyester paragraph along with the
map (7), we get a map

{(T,A1, ..., Bg) ∈ G2g+1|
g∏

i=1

[Ai, Bi] = e,Qj1(A1, ..., Bg) = T−1AjT,Qj2(A1, ..., Bg) = T−1BjT, ∀j ∈ {1, 2, ..., g}}

(8)

→{(A1, ..., Bg) ∈ G2g|
g∏

i=1

[Ai, Bi] = e} (9)

(T,A1, ..., Bg) = (ρ(ι∗(τ)), ..., ρ(ι∗(βg))) 7→ (ρ(ι∗(α1)), ..., ρ(ι∗(βg))) = (A1, ..., Bg). (10)

It is not hard to see that the image of this map is

{(A1, ...., Bg) ∈ G2g|
g∏

i=1

[Ai, Bi] = e,∃T ∈ G s.t. Q1j(A1, ..., Bg) = T−1AjT,Q2j(A1, ..., Bg) = T−1BjT} (11)

Since the set (11) is a subset of im F where F : R(Σ, G) → Gn is the homeomorphism mentioned above, we
can to identify the set (11) with a subset of R(Σ, G). Here is the process. By surjection of F , ∃ρ ∈ R(Σ, G)
such that ρ(αi) = Ai and ρ(βi) = βi. Then the relation (we have T ∈ G still) Q1j(A1, ..., Bg) = T−1AjT is
equivalent to Q1j(ρ(α1), ...) = T−1ρ(αj)T , which is equivalent to ρ(Q1j(α1, ..., βg)) = T−1ρ(αj)T . By definition,
Q1j(α1, ...) = ϕ∗(αj). Thus, we obtain (ρ ◦ ϕ∗)(αj) = T−1ρ(αj)T . Similarly, we get (ρ ◦ ϕ∗)(βj) = T−1ρ(βj)T for all
j = 1, ..., g. Use the notation for pullback: ϕ∗ρ := ρ◦ϕ∗. Note the right hand side of these equations is the evaluation
of the group action defined on R(Σ, G), g ·ρ ∈ R(π,G) is defined as x 7→ gρ(x)g−1. We have homomorphisms agreeing
on the generators, therefore ϕ∗ρ = T−1 · ρ. The set (11) is identified with

{ρ ∈ R(Σ, G) : ∃T ∈ G,ϕ∗ρ = T−1 · ρ}. (12)

Is the following correct: If we set T = 1, then we obtain the fixed set of ϕ∗ρ, which motivates step 0 in the strategy
along with the reason why the fixed field on the representation variety level does not recover all the information we
are interested in.

Now factoring in the action by conjugation, we get a the map (it is easy to check this is well-defined)

R(Σϕ, G)/G → R(Σ, G)/G (13)

[ρ] 7→ [ρ ◦ ι∗],

which is designed so that the following diagram commutes: ρ ∈ R(ΣG, G) 7→ ρ ◦ ι∗ 7→ [ρ ◦ ι∗]Σ is the same as
ρ 7→ [ρ]Σϕ

7→ [ρ ◦ ι∗]Σϕ
. For bookkeeping (we don’t actually use this corresponding map or conjugation in

this derivation), we get the corresponding map on the images of the identification mentioned above:

[(T,A1, ..., Bg)] 7→ [(A1, ..., Bg]

and that the corresponding action on the identification is h · (A1, ..., Bg) := (hA1h
−1, ..., hBgh

−1).
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The point is, to find the image of the map (13), we may just find the image of the set (12) under the natural

projection map onto the orbit space. In this connection, define the map ϕ̃∗ : R(Σ, G)/G → R(Σ, G)/G by [ρ] 7→
[ρ ◦ ϕ∗] = [ϕ∗ρ]. This is well-defined by using similar logic one uses to show the map (13) is well-defined. Under the
projection, the set (12) becomes {[ρ] : ρ ∈ R(Σ, G),∃T ∈ G,ϕ∗ρ = T−1 · ρ}. By the defining relation in the set (12),

we see ϕ∗ρ ∈ [ρ]. This implies that ϕ̃∗([ρ]) = [ρ]. Thus, the image is

{[ρ] : ρ ∈ R(Σ, G), ϕ̃∗([ρ]) = [ρ]}, (14)

which is exactly the fixed point set mentioned in part 1 of the strategy. Another note is in the special case of T = 1
is a subset of (12). Therefore, the image of the special case under the projection What kind of identification here?
will be a subset of the image (14).

SUMMARY: we got a map R(Σϕ, G) → R(Σ, G) and want to understand what the image is. Seeing the structure
directly is hard because you’re dealing with abstract homomorphisms. So we transferred the map to a map of G2g and
found the image. Then we pulled this image back to something in R(Σ, G). Using the commuting diagram mentioned
above, we then found the image of this under the natural projection and saw it is a fixed point set. Now using that
same commuting diagram, if we wish to find information about R(Σϕ, G) from this, we can directly find the fibers of
[ρ] 7→ [ρ ◦ ι∗] and then find the fibers of ρ 7→ [ρ]. Is this easier/harder than doing finding the fibers ρ ◦ ι∗ 7→ [ρ]Σ and
then the fibers of ρ 7→ ρ ◦ ι∗?

1.2 Special case of Σ = T 2, G = S3

Let G = S3 and Σ = T 2 in the above derivations.
We may translate the condition [ρ◦ϕ∗] =: ϕ̃∗([ρ])[ρ] (and thus ∃T ∈ S3, ρ◦ϕ∗ = T ·ρ) into an equivalent condition

in S3×S3 using the corresponding conjugation action mentioned in the derivation. Let A1 = ρ(α1), B1 = ρ(β1) where
we must have A1B1 = B1A1, since ρ ∈ R(T 2, S3). Then we get

∃T ∈ S3 s.t. (Q11(A1, B1), Q22(A1, B1)) = (TA1T
−1, TB1T

−1). (15)

Claim: p, q ∈ S3 and pq = qp ⇒ p, q ∈ span⟨1, p⟩ ∩ S3 (an arbitrary great circle).
Claim: q ∈ H ⇒ ∃p ∈ H s.t. pqp−1 ∈ C. Additionally, if z ∈ span⟨1, p⟩∩S3, then pzp−1 ∈ C. Additionally,

if q ∈ S3, then p may be taken to be in S3.
Claim: p, q ∈ S3 ∩ span⟨1, p⟩ (an arbitrary great circle) and ∃T ∈ S3 s.t. TpT−1 ∈ S3 ∩ span⟨1, p⟩ and

TqT−1 ∈ S3 ∩ span⟨1, p⟩, then T ∈ (span⟨1, p⟩ ∩ S3) ∪ (span⟨1, p⟩ ∩ S3)j. Special case: if p, q ∈ S1 ⊆ C, then
T ∈ S1 ∩ S1j.
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2 Simone Project Work

We wrote a code to find a connection between Chern-Simons values with properties of the monodromy matrix of the
mapping torus, specifically of the kind mentioned by Simone.

We tried to parameterize the set of monodromy matrices, but ran into technical issues with integral values.
We didn’t work on the project for long as we didn’t see much of a pattern. [8]
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Figure 1: Two presentations of π1(T
2 \ {2 pt.}). Dr. Boozer used the presentation on the left, whereas we attempt

to use the presentation on the right.

3 Boozer Project

3.1 Boozer Project Introduction

In [1], Dr. Boozer proved the claim that the traceless (SU(2)) character variety of the twice-punctured torus, χ(T 2, 2),
is homeomorphic to S2 × S2. He used quite advanced machinery, and he states that, “this does not seem to be easy
to show from our description of this space.” Such a statement gives sufficient reason to pursue an elementary proof
of the homeomorphism.

Figure 1, on the left, shows the presentation of π1(T
2 \ {2 pt.}) of Boozer given by

π1(T
2 \ {2 pt.}) ∼= ⟨A,B, a, b | [A,B]ab⟩. (16)

We propose to use the presentation on the right of Figure 1 given by

π1(T
2 \ {2 pt.}) ∼= ⟨A,B, γ⟩, (17)

where a = BAγ and b = γ−1B−1A−1 (read left to right as the order in which to follow the paths). If ρ ∈
Hom(π1(T

2 \ {2 pt.}),SU(2)), the traceless conditions tr(ρ(a)) = tr(ρ(b)) = 0 translate to tr(ρ(γ)−1ρ(B)−1ρ(A)−1) =
tr(ρ(B)ρ(A)ρ(γ)) = 0. Using SU(2) facts, this first equation is the same as tr(ρ(A)ρ(B)ρ(γ)) = 0. Therefore, using
the correspondence between representation varieties and algebraic sets, we find that

χ(T 2, 2) ∼= {(A,B,C) ∈ SU(2)3 : tr(ABC) = tr(BAC) = 0}/Inn(SU(2)), (18)

where the group action is diagonal conjugation by elements of SU(2).
The following subsections illustrate our attempts at realizing a homeomorphism between the space given by

equation (18) and S2 × S2. Throughout the attempts, we make extensive use of the homeomorphism SU(2) ∼= S3.

3.2 Reduction to Two Variables

Put
E = {(A,B) ∈ (S3)2 : tr([B,A]i) = 0}. (19)
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There is a homeomorphism between χ(T 2, 2) and E/S1, the group action being conjugation by unit-length elements
of the centralizer Z(i) ∩ S3 of i.

Our Solution. Define the map ϕ : χ(T 2, 2) → E/S1 by [(A,B,C)] 7→ [(gAg−1, gBg−1)], where g ∈ S3 is any
g such that gABCg−1 = i.

• Perhaps one may go about this proof another way by constructing an equivariant map between R(T 2, 2)
into E. However, at first glance it’s not clear how to define a well-defined version in this sense. I wrote
the proof below before I learned this technique, and I am not willing to spend the time to rewrite the
proof.

• Claim: ϕ is well-defined. Proof:

1. Such a g exists since S3 acts transitively on the purely imaginary quaternions.

2. Claim: If g ∈ S3, x ∈ H0 (the quaternions with zero real part) with gxg−1 = y, then for
h ∈ S3, it is true that hxh−1 = y ⇔ hg−1 ∈ Z(y), the algebra centralizer. This claim shows
that ϕ gives the same output for different such g.

3. Let [(A,B,C)] = [(D,E, F )]. Then D = hAh−1, E = hBh−1, F = hCh−1, and thus DEF =
hABCh−1. Let gABCg−1 = i. Then (gh−1)DEF (gh−1)−1 = gh−1DEFhg−1 = gABCg−1 = i.
Thus we need to check that (gAg−1, gBg−1) = (gh−1Dhg−1, gh−1Ehg−1), which is true.

4. Let ϕ([(A,B,C)]) = (gAg−1, gBg−1). By properties of trace, 0 = tr(BAC) = tr(gBACg−1) =
tr(gBg−1gAg−1gCg−1). Using gABCg−1 = i, we receive that gCg−1 = gB−1A−1g−1i. Combining
these two, we see that 0 = tr(gBg−1gAg−1gB−1A−1g−1i) = tr(gBAB−1A−1g−1i) = tr([B,A]i).
Thus, range(ϕ) ⊆ E.

• Claim: ϕ is surjective. Proof: Put A,B ∈ S3 such that tr([B,A]i) = 0 and let C = B−1A−1i.
Consider tr(ABC) = tr(ABB−1A−1i) = tr(i) = 0. Also note that tr(BAC) = tr(BAB−1A−1i) =
tr([B,A]i) = 0 by hypothesis. Then ϕ([(A,B,C)]) = (A,B), and since A,B were arbitrary elements in
E, the map is surjective.

• Claim: ϕ is injective. Proof: Let ϕ([(A,B,C)]) = ϕ([(D,E, F )]). Then (gAg−1, gBg−1, gCg−1) =
(hDh−1, hEh−1, hFh−1) for some g, h ∈ S3. Hence, (D,E, F ) = (h−1gAg−1h, h−1gBg−1h, h−1gCg−1h).
Thus, (D,E, F ) ∼ (A,B,C), which implies [(A,B,C)] = [(D,E, F )].

• Claim ϕ is continuous. Proof: The map F → E given by (A,B,C) 7→ (gAg−1, gBg−1) consists
of multiplications, inverse, (cartesian) product map, which are all continuous. This map is continuous.
Claim: the projection map onto the orbit space is a quotient map. Corollary: ϕ is continuous by
Theorem 22.2 from Munkres. The pre-image given by the third bullet point above along with composition
with the projection mapping is continuous, so the inverse is continuous. Q: orbit space compact by
a theorem?

■

The natural next step is to write E as a union of fibers of the trace of the commutator over span⟨1, j, k⟩ ∩ S3.
However, the fibers are not all homeomorphic, which makes it hard to see the global topology. Moreover, tr([A,B]i)
cannot be decomposed into tr(A), tr(B), tr(C), tr(AB), tr(AC), tr(BC) only. We abandoned this approach for these
reasons. Although, if we are not mistaken all the fibers, except of 1, are homeomorphic. Thus if one
could analyze how the fibers hook up at 1, one may be able to revive this approach. We did not do
this, but it seems possible.

We also tried looking at map from E to S3 given by (A,B) 7→ AB. We attempted to compute the fibers of this
map by working out cases on domain, which was a bad technique. We never re-attempted this method with
this reflection, but someone should.
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3.3 Failed Attempt

NOTE: This Section 3.3 contains a bunch of nonsense in it (e.g. mistaking a fiber bundle for a global product
structure. I considered deleting it, but I wanted to comb through it for any seeds. Claim: E/S1 ∼= S2 × S2.

Our Solution. Define f : S3 × S3 → S3 as (A,B) 7→ [B,A]. It is straightforward to see that

E =
⋃

X∈span⟨1,j,k⟩∩S3

f−1(X).

Let (A,B) ∈ E. Then ∃!X = cos(α)+Iα(X) sin(α) = cos(α)+I−α(X) sin(−α) ∈ S3 such that f(A,B) = X.
Define the equivalence relation eiα ∼1 e

−iα. We get a well-defined surjection from span⟨1, j, k⟩ ∩S3 to S1/ ∼1

by X 7→ [eiα]∼1 (extending to the case of X = ±1 by having it map to itself).
Map f−1(X) → f−1(−j) = {(C,D) ∈ (S3)2 : [C,D] = −j} via

(A,B) 7→ (gBg−1, gAg−1) = (−gB(−g)−1,−gA(−g)−1),

where g ∈ Z(i) such that g[B,A]g−1 = j. This is a homeomorphism.
Analyze f−1(−j) = {(a, b) ∈ (S3)2 : a, b, ab ⊥ 1+j}. Write a = a1+a2i+a3j+a4k, b = b1+b2i+b3j+b4k.

Then we see that (a, b) ∈ f−1(−j) ⇔ a1 = −a3, b1 = b3 (i.e. a, b are practically in R3) and

(b2 + b4)a2 + 2b3a3 + (b4 − b2)a4 = 0. (20)

Since b ∈ S3, we see that b22+(
√
2b3)

2+b24 = 1, and we may parameterize (1−1 homeomorphism) this ellipsoid
as b2 = sin(θ) sin(φ), b3 =

1√
2
sin(θ) sin(φ), b4 = cos(θ). This will make equation (20) describe a plane passing

through the origin in the variables a2, a3, a4. Enforcing that a ∈ S3 (and thus (a2, a3, a4) lies on the same
ellipsoid as (b2, b3, b4)), we see that (a2, a3, a4) must consequently lie on a great ellipse determined by b. Do a
coordinate transformation to turn this into a great circle. Every quaternion y on this great circle is given by
y = cos(ω)+ Iω(y) sin(ω) = cos(ω)+ I−ω(y) sin(−ω) (if it turns out the great circle is perpendicular to 1, then
). Define the equivalence relation ∼2 as eiω ∼2 e

−iω. We get a 1− 1 map from that great circle to S1/ ∼2 by
y 7→ [eiω].

Map the original (A,B) to the tuple

([eiα]∼1 , [e
iω]∼2 , (sin(θ) cos(φ),

1√
2
sin(θ) sin(φ), cos(θ))) ∈ S1/ ∼1 ×S1/ ∼2 ×S2 ∼= (S1×S1)/(∼1 × ∼2)×S2 ∼= S2×S2.

Claim: This map is conjugation invariant under the Z(i) action. Proof: Let g ∈ Z(i). First, we
see that f(gAg−1, gBg−1) = gf(A,B)g−1. The corresponding X’s are X vs. gXg−1. We see that Re(X) =
Re(gXg−1), so the first coordinates of the map are the same. Further, if h ∈ Z(i) such that hXh−1 = j, then
(hg−1)(gXg−1)(hg−1)−1 = j. Thus the corresponding maps f−1(X) → f−1(j) vs. f−1(gXg−1) → f−1(−j)
are defined by the rule (A,B) 7→ (hBh−1, hAh−1) vs. the rule (A,B) 7→ (hg−1A(hg−1)−1, hg−1B(hg−1)−1). It
is seen that the in the first map (looking at the images of the specific points now), (A,B) 7→ (hBh−1, hAh−1)
and in the second map (gAg−1, gBg−1) 7→ (hBh−1, hAh−1), the same thing. Hence, the second and third
entries in the tuple of the map will be the same. ■

3.4 Trace Map and Identities

After putting the reduction to two variables approach aside, we realized the importance of looking at conjugation-
invariant maps out of R(T 2, 2). For example, a trace invariant map from R(T 2, 2) induces a well-defined map from
χ(T 2, 2). Another reason, which we did not really apply, is that of the niceness of principal bundles, for which one
must have a projection map whose fibers are preserved by the diagonal conjugation action.
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For three variables in SL(2,C), the most general and natural such map is Φ : SL(2,C)3 → C6 given by

(A,B,C) 7→ (tr(A), tr(B), tr(C), tr(AB), tr(AC), tr(BC)). (21)

The reason this is the most general such map is that an extension of the classical result of Fricke and Vogt states
that Φ is surjective [5]. Moreover, trace of any monomial of SL(2,C matrices can be expressed as a polynomial with
integer coefficients in these 6 traces. See [10], [9], [2], [7] for related information and the two variables case. See [12]
and [11] for information on generators of ring of invariants. The source [12] is particularly general.

The particular relations for tr(ABC) and tr(BAC) are

tr(ABC) = P (T ) := t1t23 + t2t13 + t3t12 − t1t2t3, (22)

tr(BAC) = Q(T ) := t21 + t22 + t23 + t212 + t213 + t223 + t12t13t23 − t1t2t12 − t1t3t13 − t2t3t23 − 4, (23)

where t1 = tr(A), t2 = tr(B), t3 = tr(C), t12 = tr(AB), t13 = tr(AC), t23 = tr(BC), and T = (t1, t2, t3, t12, t13, t23). By
slight abuse of notation, define

A = {T ∈ [−2, 2]6 : P (T ) = Q(T ) = 0}. (24)

When restricted, SU(2)3, Φ|SU(2)3 , maps into [−2, 2]6 ⊆ R6. By slight abuse of notation, henceforth denote the
further restriction Φ|R(T 2,2) : R(T 2, 2) → A as Φ. As noted above, Φ induces a map from χ(T 2, 2), henceforth denoted

as Φ̃.
Lemma (Moment Problem): Let a,b ∈ R3 and let c1, c2 ∈ R. Then there exists a unique vector

c ∈ span⟨a, c⟩ such that a · c = c1 and b · c = c2.
Claim: Φ̃ : χ(T 2, 2) → A is injective.

Our Solution. Let Φ(A,B,C) = Φ(D,E, F ). Then tr(A) = tr(D), tr(B) = tr(E), tr(C) = tr(F ), tr(AB) =
tr(DE), tr(AC) = tr(DF ), tr(BC) = tr(EF ). Write A = r + u, B = s + v, C = t + w, D = r′ + u′, E =
s′ + v′, F = t′ + w′. From the first three equalities we immediately receive r = r′, s = s′, t = t′ and
||u|| = ||u′||, ||v|| = ||v′||, ||w|| = ||w′||. The last three equalities from the injectivity hypothesis state
rs − u · v = r′s′ − u′ · v′, rt − u · w = r′t′ − u′ · w′, st − v · w = s′t′ − v′ · w′. These imply that u · v =
u′ ·v′,u ·w = u′ ·w′,v ·w = v′ ·w′. Further note from equation (31) below that u,v,w span a two-dimensional
vector space. By transitivity of conjugation, ∃g ∈ S3 such that g(r+u)g−1 = r+u′. Claim (*): ∃h ∈ Z(u′)
such that hg(s + v)(hg)−1 = s + v′. One way to see this is once u, u · v, and a plane containing 0,u are
all fixed, then there are only two choices in that plane for a possible v. These choices are conjugate to each
other via an element of Z(u) (specifically a reflection of the plane). Recall that u,v,w,0 lie in a plane, and
u′,v′,w′,0 lie in a plane. When u is conjugated to equal u′, we further conjugate via ℓ ∈ Z(u′) so that
the plane spanned by ℓgu(ℓg)−1, ℓgv(ℓg)−1, ℓgw(ℓg)−1 coincides with the plane spanned by u′,v′,w′. Since
dot products are invariant under this conjugation (rotation), we find that gvg−1 and v′ must be one of two
possible solutions, which are conjugate to each other via an element h′ ∈ Z(gug−1) = Z(u′). Therefore, put
h = h′ℓg so that u′ = huh−1,v′ = hvh−1. Claim (*) is shown. To finish the proof, by uniqueness of the
Moment Problem (see above lemma), we get that w′ = hwh−1. ■

What is the image Φ̃? In section 3.6, we show Φ̃ is not surjective. In some ways this is the main difficulty of the
problem. If one identifies the image, then we believe the complete solution to the project would follow. The difficult
part is trying to express SU(2) conditions (e.g. orthonormality, determinant 1) via the trace map.

Something we’re not sure we spent enough time thinking about is whether the result of Procesi [12],
specifically that of the specification of the generators for the ring of invariants of U(2) invariants, would
be useful in determining the image. One would have find an analogous result for SU(2) invariants.
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3.5 Goldman Papers

Theorem 4.3 of Goldman [4] states that {(x, y, z) ∈ (−2, 2)3 : x2 + y2 + z2 − xyz − 2 < 2} ⊆ image f , where
f : SU(2)2 → R3 is given by f(A,B) = (tr(A), tr(B), tr(AB)). This result is useful in determining the image of
f (one need only further work out the edge cases). We tried to extend this result and combine it with Goldman’s
3-variable SL(2,C) case result (see section 5 in [5]) to get the 3-variable SU(2) analog. We could not extend the
proof of his Theorem 4.3 because we attempted to find a particular solution in SU(2) to the map (21) using the
particular SL(2,C) solutions Goldman provided on page 574 of [4]. We obtained a solution but needed to satisfy
a large inequality. However, we prematurely stopped pursuing this method for no apparent reason.
Moreover, as we reflect on this approach with the added knowledge gained from our other attempts,
we see potential in reviving this approach.

3.6 Non-surjectivity Result

Φ : R(T 2, 2) → A, as defined in Section 3.4, is not surjective.

Our Solution. Let T = (t1, t2, t3, t12, t13, t23) ∈ A. Assume that ∃(A,B,C) ∈ R(T 2, 2) such that Φ(A,B,C) =
T . Write A = r + u, B = s + v, C = t +w. We require s = t2

2 , t =
t3
2 , and

t23
2 = st − v ·w. Therefore, we

require

cos(θ) =
t2t3
4 − t23

2√(
1− t22

4

)(
1− t23

4

) , (25)

where θ is the relative angle between v and w, which implies

−1 ≤
t2t3
4 − t23

2√(
1− t22

4

)(
1− t23

4

) ≤ 1. (26)

However, notice that

(t1, t2, t3, t12, t13, t23) = (1.95778975, 1.52734115,−1.5, 1.81,−1.8, 0.5) ∈ A

(within a 10−8 error) but that

t2t3
4 − t23

2√(
1− t22

4

)(
1− t23

4

) = −1.92669413696. (27)

■

We wonder whether the inequalities given by the cosines of relative angles are sufficient to determine
the image. One should relate these inequalities to the inequalities of Sylvester’s Theorem below and
perhaps to the inequality mentioned in Section 3.5.

3.7 Find the Image

The main crux of the problem is to find the image of this trace map. We expect that it is the above variety but
with closed inequality constraints enforced. The issue with just using the Fricke-Vogt equations is that only encodes
SL(2,C) information and says nothing about SU(2). The additional information we must incldue is that determinant
= 1 and that the columns form an orthonormal basis.

There are a few equivalent perspectives one may take in attempting to encode this information
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• S3 Scalar + Vector Approach

– Viewing the scalar and 3D vector as separate objects but related to one another via the unit modulus
condition.

– View as an indecomposable 4-dimensional object

• Just SU(2) matrix approach

• Hopf Coordinates or Two Complex Numbers Approach

3.8 S3 Scalar + Vector Approach, 3D vector and scalar are separate

Thus far, this approach has been unsuccessful in fully resolving the problem. Despite this, we have gained some
insight into the problem from it.

The reason that this approach seemed promising was

• Conjugation action is simple and intuitive

• One of the equations we get has a really nice geometric interpretation.

• Vector algebra encodes the SU(2) information nicely and intuitively into 3D rotations and stuff.

Recall that S3 ∼= SU(2) as Lie Groups. Via this isomorphism, one may show that tr(A) = 2 ·Re(A), where on the
left-hand-side A ∈ SU(2) and on right-hand-side is the element of S3 corresponding to A. Henceforth, I will use the
same symbol interchangeably between the matrix or 4-vector definition. Moreover, a unit length quaternion A ∈ S3

has a natural interpretation as A = r + u, where r ∈ R and u ∈ R such that r2 + ||u|| = 1.
By the isomorphism above, the vector algebra on these unit length quaternions encode the above determinant 1

condition and the orthonormality of columns conditions. Moreover, there is a nice formula to multiply two elements
in S3. If A = r + u ∈ S3 and B = s+ v ∈ S3, then

AB = (rs− u · v) + (rv + su+ u× v). (28)

Multiplying out the triple product, one finds that (if we denote C = t+w ∈ S3 and use A,B as above).

Re(ABC) = rst− t(u · v)− s(u ·w)− r(v ·w)−w · (u× v), (29)

Re(BAC) = rst− t(u · v)− s(u ·w)− r(v ·w) +w · (u× v). (30)

One finds that the conditions of tr(ABC) = tr(BAC) = 0 are equivalent those of tr(ABC) + tr(BAC) = 0 and
tr(ABC) − tr(BAC) = 0. Substituting in equations (29) and (30), one finds that these conditions are equivalent to
those of

0 = w · (u× v), (31)

0 = rst− t(u · v)− s(u ·w)− r(v ·w). (32)

We have shown that

R(T 2, 2) ∼=
{
(r + u, s+ v, t+w) ∈ (S3)3 : r2 + ||u||2 = 1,

s2 + ||v||2 = 1,

t2 + ||w||2 = 1,

w · (u× v) = 0,

rst− t(u · v)− s(u ·w)− r(v ·w) = 0

}
. (33)
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The problem now reduces to understanding what this set is.
One approach we took is to fully commit to the 3D vector approach. This requires rewriting r = ±

√
1− ||u||2, etc.

in the last equation above. We then get a map R(T 2, 2) → B0(1)
3
, where B0(1) := {(x, y, z) ∈ R3 : x2 + y2 + z2 ≤ 1}

given by (r + u, s+ v, t+w) 7→ (u,v,w). The image of this map is

{(u,v,w) ∈ B0(1)
3
:

w · (u× v) = 0,

(±u1)
√
(1− ||u||2(±v1)

√
1− ||v||2(±w1)

√
1− ||w||2)∓w

√
1− ||w||2(u · v)∓v

√
1− ||v||2(u ·w)∓u

√
1− ||u||2(v ·w) = 0},

(34)

where we have eight choices of (±u,±v,±w) (i.e. the above set has these eight equations connected with logical OR).
We took four approaches to investigate the sets identified in equation (33) and (34). We cover them in the following

four subsections.

3.8.1 Gluing Approach

Claim: There is a bijective correspondence H := {(c2, u1, u2) ∈ R× (R3)2 : ∃!u3 ∈ span⟨u1, u2⟩ s.t. u1 · u3 =
c2, u2 · u3 = 1− u1 · u2 − c2} ∼= {(a, b, c) ∈ (R3)3 : a, b, c, 0 are coplanar, 1 = a · b+ a · c+ b · c} given by the map
(c2, u1, u2) 7→ (u1, u2, u3). Use the moment problem to show the bijection.

Claim: H = R× (R3)2. To show this, use the moment problem.
Therefore, we get an 8-to-1 covering map

R(T 2, 2) ∩ {r ̸= 0, s ̸= 0, t ̸= 0} → {(a, b, c) ∈ (R3)3 : a, b, c, 0 are coplanar, 1 = a · b+ a · c+ b · c}

given by

(r + u, s+ v, t+w) 7→
(
||u||
r

û,
||v||
s

v̂,
||w||
t

ŵ

)
. (35)

The map is 8-to-1 because ||−u||
−r (−1)û = ||u||

r û. For example, R(T 2, 2) ∩ {r > 0, s > 0, t > 0} ∼= R × (R3)2, a
homeomorphism.

To understand the codomain of this map better, we tried analyzing the fibers of the dot product map f : (R3)2 → R
given by (a, b) 7→ a · b. Specifically we sought a free and transitive group action that preserved each fiber. We failed
in doing so because we cannot get a free group action (i.e. one without the S1 roll action as found in the Hopf
fibration) that obtains all the rotational degrees of freedom, for that requires a (probably) smooth group structure
on S2, which does not exist. Moreover, we did not succeed in finding a transitive group action that preserved the
fibers because our attempt consisted of combining an SO(3) diagonal action with a multiplication action R∗ acts on
(R3)2 via h, a, b 7→ (ha, 1

hb). Combining these won’t get every fiber element because we miss those vectors which have
a larger relative angle and long enough so as to preserve the dot product.

We computed the fibers of the dot product a different way (We’re not exactly sure how this fits in with
this section, but we put it here anyway.). Fix a ∈ R3 and d ∈ R, now find all b such that f(a, b) = d. Let
a ̸= 0. If d = 0, then b = 0 OR b ⊥ a, so the solution space of b is R2 (fiber). If d ̸= 0, then b ̸= 0 AND cos(θ) ̸= 0,
where θ is relative angle. Then ||b|| = d

||a|| cos(θ) with case i) d > 0 and cos(θ) > 0 OR case ii) d < 0 AND cos(θ) < 0.

In case i) given θ ∈ [0, 90◦) which describes orientation in a plane, ∃!b in that plane with f(a, b) = d. Then we may
do a rotation about a to get all other elements in the fiber. In case 2) given θ ∈ (90◦, 180◦], ∃!b in a plane with that
orientation. Similarly rotate around a to get all elements in the fiber. Combining the cases, we get a disconnected
hyperbolic shape with the property that the union of the fibers over d ∈ R is R3. If a = 0, then the fiber is ∅ if d ̸= 0
and R3 else. Furthermore, if a ̸= 0 and d limits to 0, then the hyperbolic shape limits to R2.

Boundary Cases.

1. R(T 2, 2) ∩ {r = 0, s = 0, t ̸= 0}. This is equal to

{(û, s+v, t+w) ∈ S2×(S3)2 : û,v,w,0 are coplanar, t(û ·v)+s(û ·w) = 0, s2+v2 = t2+w2 = 1, s ̸= 0, t ̸= 0}.
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For each û, map this set onto {(a, b) ∈ (R3)2 : a+ b ⊥ û} ∼= R2 via (û, s+ v, t+w) 7→
(
v
s ,

w
t

)
. This is a 4-to-1

covering map with fibers homeomorphic to R2, total space R(T 2, 2) ∩ {r = 0, s = 0, t ̸= 0}, and base space S2.

2. R(T 2, 2)∩{r = 0, s = 0, t ̸= 0}. This set equal to {(û, v̂, t+w) ∈ (S2)2 ×S3 : û, v̂,w,0 are coplanar, t(û · v̂) =
0, t2 + w2 = 1, t ̸= 0}. For each û, v̂ such that û · v̂ = 0 (We believe with this relation that û, ŵ come from
S3), map this set onto R2 via w 7→ w/t (This doesn’t really make sense, but I don’t have time to re-analyze
it.) Thus we get a fiber bundle with fibers homeomorphic to R2 and base space S3.

3. R(T 2, 2) ∩ {r = 0, s = 0, t = 0}. This set is {(û, v̂, ŵ) ∈ (S2)3 : û, v̂, ŵ,0 are coplanar}. We get that this is a
fiber bundle with fibers homeomorphic to S1 and base space S2 × S2.

Some further comments on this approach.

• We briefly connected this approach to projective geometry and how it might relate to the 8-to-1 cover of
R(T 2, 2)SU(2) → R(T 2, 2)SO(3). What are the fibers of the induced map χ(T 2, 2)SU(2) → χ(T 2, 2)SO(3)? Is
it 4-to-1?

• One may relate a · b+ a · c+ b · c to an energy and momentum interpretation.

3.8.2 Stereographic Projection

Similar to the approach of Section 3.8.1.
Stereographic projection (about the point (−1, 0, 0, 0)) is the correspondence of p = (x0, x1, x2, x3) ∈ S3 \

{(−1, 0, 0, 0)} 7→ u = 1
1+x0

(x1, x2, x3) ∈ R3. The inverse of this map is u ∈ R3 7→
(
1−||u||2
1+||u||2 ,

2u
1+||u||2

)
∈ S3 \

{(−1, 0, 0, 0)}. We saw some similarities between this map and the map (3.8.1). Some good things about stereo-
graphic projection is that the vector part of p is in the span of the image u of p, which implies that equation 31) is
preserved. Furthermore, the square roots are removed from equation (32). Specifically, if

r =
1− ||z1||2

1 + ||z1||2
,u =

2z1
1 + ||z1||2

,

s =
1− ||z2||2

1 + ||z2||2
,v =

2z2
1 + ||z2||2

,

t =
1− ||z3||2

1 + ||z3||2
,w =

2z3
1 + ||z1||3

,

then equation (32) is

(1− ||z1||2)(1− ||z2||2)(1− ||z3||2)− (1− ||z3||2)4z1 · z2 − (1− ||z2||2)4z1 · z3 − (1− ||z1||2)4z2 · z3 = 0. (36)

This is as far as our analysis went on this approach. Perhaps more work is to be done now that
square roots are absent.

3.8.3 Angular Substitution Attempt

Start with equation (32). Make the substitutions (invertible coordinate transformation)

r = cos(α),u = sin(α)Iα,

s = cos(β),v = sin(β)Iβ,

t = cos(γ),w = sin(γ)Iγ ,
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for α, β, γ ∈ (0, π) and Iθ is the vector part of the quaternion divided by sin(θ). Now by enforcing the coplanarity of
Iα, Iβ, Iγ , 0 along with finding a unique representative of each conjugacy class, we may write Iα = i, Iβ = cos(ξ)i +
sin(ξ)j, Iγ = cos(η)i + sin(η)j with (ξ, η) ∼ (−ξ,−η). Plugging everything into equation (32), we find that this
equation is equivalent to the following information:

cos(α) cos(β) cos(γ)−cos(γ) sin(α) sin(β) cos(ξ)−cos(β) sin(α) sin(γ) cos(η)−cos(α) sin(β) sin(γ) cos(ξ−η) = 0 (37)

with additional data of α, β, γ ∈ (0, π) and (ξ, η) ∼ (−ξ,−η).
This approach does not work because we are taking a representative of the conjugacy class first and then plug-

ging that into the remaining equation, which is an artificial placement on the set. We prefer to find a natural
parameterization of the equation and then get a unique representative from that.

The remaining equation is also abstruse. We also get a bunch of equivalence relations which makes it even more
difficult see what’s going on.

Q: How does this relate to spherical geometry? Is the denominator of
√
1− x2 show up in spherical

geometry?

3.8.4 Hyperbolic Trigonometry Approach

See [6] for information regarding hyperbolic trigonometry.
There is a map S3 → D3 = {(x, y, z) ∈ R3 : x2 + y2 + z1 ≤ 1} given by r + u 7→ u. Apply this map to R(T 2, 2)

to get three points in D3 coplanar with 0. We may restrict D3 and its hyperbolic metric to that disc, which becomes

a Poincare 2-disc with metric d(u,v) = 2 sinh−1

(
||u−v||√

(1−||u||2)(1−||v||2)

)
, where || · || is the Euclidean norm. Denote

du = d(u, 0), dv = d(v, 0), dw = d(w, 0). Take equation (34), divide it by rst (r ̸= 0, s ̸= 0, t ̸= 0), and introduce the

formula sinh
(
d(u,0)

2

)
= ||u||√

1−||u||2
to get

1

=(±u1)(±v1) sinh

(
du
2

)
sinh

(
dv
2

)
cos(θuv) + (±u1)(±w1) sinh

(
du
2

)
sinh

(
dw
2

)
cos(θuw) + (±v1)(±w1) sinh

(
dv
2

)
sinh

(
dw)

2

)
cos(θvw)

(38)

Use the hyperbolic law of cosines cosh(c) = cosh(a) cosh(b)−sinh(a) sinh(b) cos(γ) on the inner three sub-triangles
(one may check that these are well-defined) of Figure 2. Depending on what (±u,±v,±w) is, we can add/subtract
these three hyperbolic law of cosines in the corresponding way to get a relation independent of the inner θ angles
(which is thus a statement about the intermediate triangle). For example, if we take (±u,±v,±w) = (+,+,+) and
multiply each law of cosines by −1 and then add all of them, we get the relation (referring to Figure 2)

1 = cosh

(
dv
2

)
cosh

(
dw
2

)
+ cosh

(
dw
2

)
cosh

(
du
2

)
+ cosh

(
du
2

)
cosh

(
dv
2

)
− cosh

(
d′vw

)
− cosh (duw′)− cosh

(
d′uv

)
.

(39)
Some thoughts we’ve been having are as follows. We want to define a measurement of a hyperbolic triangle that

is finite even for ideal triangles. This naturally leads to area and angles. We are unsure of the connection between
equation (38) and areas/angles. Perhaps there is a better trigonometric view of this equation. The condition of
∆ = 1− cosh2(a)− cosh2(b)− cosh2(c)+2 cosh(a) cosh(b) cosh(c) > 0 for side lengths a, b, c to form a hyperbolic
triangle (this inequality breaks down for ideal triangles... What’s going on?) is similar to the inequality
mentioned in Section 3.5.

At this stage it is not clear how to proceed with this approach. Some drawbacks of this approach are that the
map is 8-to-1, and the map depends where the origin is. This second point means it is not truly a hyperbolic gadget
because the triangle is invariant under the Mobius transformations that fix the origin. Maybe there is a better way
to define the hyperbolic map, but if one cannot fix the 8-to-1 issue, it’s not that worthwhile. It is also not clear how
the residual axis rotation conjugation factors in nicely with the hyperbolic structure.
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Figure 2: Triangle related to certain A,B,C ∈ R(T 2, 2) under the map S3 → D3.

3.8.5 Interesting Dot Product Formulation

SEE PAGE H30.5 for more information. Equation (32) may be written as

rst =

r
s
t

 ·

v ·w
u ·w
u · v

 . (40)

This implies the equation

r2s2t2

r2 + s2 + t2
= [(v ·w)2 + (u ·w)2 + (u · v)2] cos2(θ), (41)

where θ is the angle between these two abstract vectors. We do not know what to make of this construction.

3.8.6 Interesting Identity

For A = r+ u, B = s+ v, C = t+w ∈ S3, the information of [w · (u× v)]2 = 0 and r2 + u2 = s2 + v2 = t2 +w2 = 1
implies (but does not seem equivalent to) the following equation

0

=[1− 1

4
tr2(A)][1− 1

4
tr2(B)][1− 1

4
tr2(B)]− [1− 1

4
tr2(C)][

1

4
tr(A)tr(B)− 1

2
tr(AB)]

− [1− 1

4
tr2(A)][

1

4
tr(B)tr(C)− 1

2
tr(BC)]− [1− 1

4
tr2(B)][

1

4
tr(A)tr(C)− 1

2
tr(AC)]

+ 2[
1

4
tr(A)tr(B)− 1

2
tr(AB)][

1

4
tr(A)tr(C)− 1

2
tr(AC)][

1

4
tr(B)tr(C)− 1

2
tr(BC)]. (42)

One receives this by expanding out [w · (u × v)]2 = 0 using vector algebra identities. We have not thought
any further about this equation, although there does seem to be similarities with equation (32).
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3.9 A Substitution

Take the equations in the set (24) and introduce the variables u1, u2, u3, v1, v2, v3 ∈ R via the coordinate transformation

t1 = u1 + v1, (43)

t23 = u1 − v1, (44)

t2 = u2 + v2, (45)

t13 = u2 − v2, (46)

t3 = u3 + v3, (47)

t12 = u3 − v3. (48)

Note that P (T ) = Q(T ) = 0 ⇔ 1
2(P (T ) + 1

2Q(T )) = 1
2(P (T ) − 1

2Q(T )). Using this new form and the variable
substitution, the system is equivalent to

1 = u21 + u22 + u23 − u1u2u3 − u1u2v3 − u1v2u3 − v1u2u3, (49)

1 = v21 + v22 + v23 + v1v2v3 + v1v2u3 + v1u2v3 + u1v2v3. (50)

We get six variables and two equations which are dual.

3.9.1 A Lemma

This is relevant for the Quadratic Form approach below when we talk about eigenvalue = 0 and singular points
(disclaimer: this idea is not fully developed yet).

Lemma: Let A,B,C ∈ S3. Then ZA ∩ ZB ∩ ZC ⊃ {−1, 0, 1} (proper subset, algebra centralizers) ⇔ A,B,C all
share the same axis or are some/all are purely real.

Our Solution. Sublemma: ZA ∩ S3 = {h ∈ S3|h has same or 0-axis (purely real)}. This sublemma follows by
expressing A and h in angle-axis forms and then multiplying out and noting that the cross product of their
axes is zero. SUBLEMMA PROVED. By hypothesis of the main lemma, ∃h ∈ ZA ∩ ZB ∩ ZC \ {−1, 0, 1},
which is equivalent to ∃ĥ ∈ ZA ∩ S3 ∩ ZB ∩ S3 ∩ ZC ∩ S3 \ {−1, 0, 1}. By sublemma, ĥ is purely real (0-axis)
OR it has the same axis as A,B,C. ĥ ̸∈ R, for then ĥ = ±1, false. Thus, ĥ has a non-degenerate axis. Now
we have a few cases

1. None of A,B,C is real. Then ĥ has the same axis as all three, which implies that A,B,C all have the
same axis.

2. Exactly one of A,B,C is purely real. Then ĥ has the same axis as the two non-real quaternions.

3. At least two of A,B,C are purely real. This case is trivial since centralizer of real numbers is the whole
space.

■

One may apply this classification to the additional conditions within R(T 2, 2) to get 8 equations (the dot products
simplify since the vector parts would be collinear with 0). We haven’t thought too much about this.

3.9.2 Dimensional Reduction

Provide the example calculations I did on those sheets. Notice that we are just diagonalizing and also want the
eigenvalues to be WHAT.

Motivates the quadratic form and diagonalization approach.
In equations (49) and (50), put u1 = v3 = 0. They become

1 = u22 + u23 − v1u2u3, (51)

1 = v21 + v22 + v1v2u3. (52)
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Make the substitution (valid since ∀i, ui, vi ∈ [−2, 2]

mu =
1

2

√
2− v1(u2 + u3), (53)

nu =
1

2

√
2 + v1(u2 − u3), (54)

mv =
1

2

√
2 + u3(v1 + v2), (55)

nv =
1

2

√
2− u3(v1 − v2). (56)

Then equations (51) and (52) are equivalent to

1 = m2
u + n2

u, (57)

1 = m2
v + n2

v. (58)

Lemma: If we view the ui, vi variables as coming from R(T 2, 2), then ∀i, ui, vi ∈ (−2, 2).

Our Solution. We’ll do the example of v1, but by symmetry this argument extends to the others. We have
v1 = 1

2 [tr(A) − tr(BC)] for some A,B,C ∈ SU(2) by hypothesis. Write A = r + u, B = s + v, C = t +w. If
v1 = 2, then tr(A) = 2 and tr(BC) = −2 so that r = 1,v = 0, st−v ·w = −1. By equation (32), st−v ·w = 0,
a contradiction. We get a similar contradiction if v1 = −2. ■

This particular example of u1 = v3 = 0 generalizes. If ui = vj = 0 for i ̸= j, then the substitution is (subscripts
wrap around):

mu =
1

2

√
2− vi(ui+1 + ui+2), (59)

nu =
1

2

√
2 + v1(ui+1 − ui+2), (60)

mv =
1

2

√
2 + uj(vj+1 + vj+2), (61)

nv =
1

2

√
2− uj(vj+1 − vj+2). (62)

If ui = vi = 0, then we get a decoupled set of circles.
We tried using blind algebraic guesses to find the 6-dimensional generalization, but these did not work. Our main

guess is that diagonalization of the quadratic form is the coordinate transformation we’re looking for.

3.9.3 Quadratic Form Approach

The dimensional reduction explorations motivate pursuing quadratic forms and diagonalization.
Write equations (49) and (50) in the following suggestive forms:

1 = u21 + u22 + u23 − a1u2u3 − a2u1u3 − a3u1u2 = (u1 u2 u3)

 1 −a3
2 −a2

2
−a3

2 1 −a1
2

−a2
2 −a1

2 1

u1
u2
u3

 , (63)

1 = v21 + v22 + v23 + b1v2v3 + b2v1v3 + b3v1v2 = (v1 v2 v3)

 1 b3
2

b2
2

b3
2 1 b1

2
b2
2

b1
2 1

v1
v2
v3

 , (64)

where a1 = b1 = u1 + v1, a2 = v2, a3 = v3, b2 = u2, b3 = u3. Let A be the coefficient matrix consisting of the ai above,
and let B be the coefficient matrix consisting of the bi.
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Since A,B are symmetric, by Spectral Theorem we may diagonalize each to orthogonal eigenbases in R. Let
λA1, λA2, λA3 and λB1, λB2, λB3 be the eigenvalues of A and B, respectively. Let vA1,vA2,vA3 and vB1,vB2,vB3 be
the corresponding eigenvectors. Let PA be the matrix whose columns are vA1,vA2,vA3, in that order, and let PB be
the corresponding matrix for vBi. Note tht PA is a function of u1, v1, v2, v3, and PB is a function of v1, u1, u2, u3. Ifu′1

u′2
u′3

 = P−1
A

u1
u2
u3

 , (65)

with v′i having an analogous definition, then equations (49) and (50) become

1 = λA1u
′2
1 + λA2u

′2
2 + λA3u

′2
3 , (66)

1 = λB1v
′2
1 + λB2v

′2
2 + λB3v

′2
3 . (67)

Both of these equations describe ellipsoids if and only if λAi, λBi ≥ 0 for all i ∈ {1, 2, 3}. This is equivalent to A,B
both being positive semi-definite.

Sylvester’s Criterion states that A,B are positive semidefinite if and only if the following conditions hold:

a2 ≤ 0, (68)

1− a21
4

≥ 0, (69)

1− a22
4

≥ 0, (70)

1− a23
4

≥ 0, (71)

−a1
2

− a2a3
4

≥ 0, (72)

a2
2

+
a1a3
4

≥ 0, (73)

−a3
2

− a1a2
4

≥ 0, (74)

1− a21
4

− a22
4

− a23
4

− a1a2a3
4

≥ 0, (75)

b2 ≥ 0, (76)

1− b21
4

≥ 0, (77)

1− b22
4

≥ 0, (78)

1− b23
4

≥ 0, (79)

b1
2

− b2b3
4

≥ 0, (80)

−b2
2

+
b1b3
4

≥ 0, (81)

b3
2

− b1b2
4

≥ 0, (82)

1− b21
4

− b22
4

− b23
4

− b1b2b3
4

≥ 0. (83)

We have the following outlook of the situation:

χ(T2, 2) {(t1, t2, t3, t12, t13, t23) ∈ [−2, 2]6 : P (T ) = Q(T ) = 0, extra conditions}

{(u1, u2, u3, v1, v2, v3) ∈ (−2, 2)6 : 1 = u2
1 + . . . , 1 = v2

1 + . . . , extra conditions} {(m,n, ℓ,m′, n′, ℓ′) ∈ R6 : m2 + n2 + ℓ2 = 1,m′2 + n′2 + ℓ′2 = 1}
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That is, we want to identify what the “extra conditions” are on the (u1, u2, ...) set in order for the departing arrow
to be a well-defined bijection. Then we hope to backtrack that to the “extra conditions” on the (t1, ...) set so that
that incoming arrow is also a surjection. I.e. we hope that the SU(2) conditions we’re missing imply that condition.
This backtracking idea is possible since we already know that the (m,n, ...) set, our final destination, is supposed to
be S2 × S2, according to Boozer. Our current guess is that the non-negativity of the eigenvalues λAi, λBi ≥ 0 are
these conditions on the (u, v, ...) set.

Claim: The last arrow in the above diagram, the one between the u−v set and the m−n set (S2×S2)
actually exists (well-defined map) IF we enforce λAi, λBi ≥ 0.

Our Solution. Define the sets M1 = {(u1, u2, u3, v1, v2, v3) : 1 = u21+u22+u23−u1u2u3−u1u2v3−u1v2u3−
v1u2u3, 1 = v21+v22+v23+v1v2v3+v1v2u3+v1u2v3+u1v2v3, ∀iλAi, λBi ≥ 0} andM2 = {(u′1, u′2, u′3, v′1, v′2, v′3, λA1, λA2, λA3, λB1, λB2, λB3) :
1 = λA1u

′2
1 + λA2u

′2
2 + λA3u

′2
3 , 1 = λB1v

′2
1 + λB2v

′2
2 + λB3v

′2
3 }. Define the map f2.1 : M1 → M2 given by



u1
u2
u3
v1
v2
v3

 7→



(
P−1
A O

O P−1
B

)


u1
u2
u3
v1
v2
v3


λA1

λA2

λA3

λB1

λB2

λB3



.

This map is well-defined because A,B are symmetric so all the eigenvalues exist and A,B are diagonalizable.
Define the map f2.2 : M2 → S2 × S2 given by

u′1
u′2
u′3
v′1
v′2
v′3
λA1

λA2

λA3

λB1

λB2

λB3



7→



√
λA1u

′
1√

λA2u
′
2√

λA3u
′
3√

λB1v
′
1√

λB2v
′
2√

λB3v
′
3

 .

The map f2.2 is well-defined precisely because λAi, λBi ≥ 0. Thus the composition f3 = f2.2◦f2.1 : M1 → S2×S2

is well-defined. ■

We think we get bijection even if some λAi, λBi = 0, for these are singular points and we’ll work out special cases
for them.

We currently think that f3 is a bijection under the non-negativity of eigenvalues condition set. To prove bijection,
we should not look at f2.1, f2.2 separately.

Sylvester’s Criterion give inequality conditions on the ui, vi for non-negativity of eigenvalues. Perhaps there is a
simpler set of inequalities. Perhaps if the discriminants of the characteristic polynomials of the A,B matrices are

19



Figure 3: Illustration of equation (49) for v1 = 0.12, v2 = −0.8, v3 = 0.15. u1, u2, u3 are the x-,y-, and z-axis,
respectively.

non-negative and the constant term is non-negative then the roots are real and non-negative and roots = 0 correspond
to the eigenvalue = 0 cases.

The eigenvalue = 0 are the singular points of our traceless representation variety we’re guessing.
Hard part about all of this: The diagonalization and coordinate transformation depend on u1, u2, u3, v1, v2, v3 so

it’s non-linear.
For an ellipsoid want non-negativity. Technically, we also need it contained in [−2, 2]6 as a necessary condition

for trace of SU(2) matrices, but we hope these are implied from the non-negativity of eigenvalues for free.

3.9.4 Another Attempt to Enforce Closed Shape

If temporarily define F (u1, u2, u3; v1, v2, v3) = u21+u22+u23−u1u2u3−u1u2v3−u1v2u3−v1u2u3−1 andG(v1, v2, v3;u1, u2, u3) =
v21 + v22 + v23 + v1v2v3 + v1v2u3 + v1u2v3 + u1v2v3 − 1, then equations (49) and (50) become F (u1, u2, u3, v1, v2, v3) =
G(u1, u2, u3, v1, v2, v3) = 0. We want there to be isolated “inner blob” shapes in the F = 0 equation and the G = 0
equation. We believe there to be conditions on v1, v2, v3 (resp. u1, u2, u3) that give the “inner blob” shape for the
F = 0 (resp. G = 0) equation. A necessary condition for the “inner blob” shape to be “closed” or “spheroid” is
that the normalized normal vector to the zero set F = 0, viewing v1, v2, v3 as fixed parameters, on [−2, 2]6 is sur-
jective onto S2 (see Figure 3). The precise question for the F = 0 equation is do there exist conditions on v1, v2, v3
such that ∀θ ∈ [0, π],∀ϕ ∈ [0, 2π], ∃u1, u2, u3 ∈ [−2, 2] satisfying ∇F

||∇F || = sin(θ) cos(ϕ)̂i+ sin(θ) sin(ϕ)ĵ + cos(θ)k̂ and

∀u1, u2, u3, ||∇F || ̸= 0 given the conditions? We proceeded by calculating the gradient of F and then normalizing it.
We obtained equations to satisfy, but these were too abstruse to analyze and we abandoned the method. Perhaps
there is a better way to portray surjectivity onto S2.

20



3.9.5 Solve System by Symmetry

See [3] for a motivation of the approach. The action by a matrix M on equations (49) and (50) is the variable sub-
stitution (u1, u2, u3, v1, v2, v3) 7→ M(u1, u2, u3, v1, v2, v3)

t. The equations are invariant under action by the following
classes of matrices:

Type A: P ⊗ I2 (Kronecker product I think the order here is backward that found in the Wikipedia page), where
P is any 3× 3 permutation matrix, and I2 is the 2× 2 identity matrix and type B2:

I3 ⊗
(
0 −1
1 0

)
and type B1 the block matrix obtained by

I3 ⊗
(
0 1
1 0

)
and multiplying exactly one of the first three rows of the matrix by −1. We have not verified that these are all the
permutation symmetries of the equations.

The task would now be to identify a simple family of primary invariants for these matrices. We could not find
any families that simplified the equations (e.g. coupled symmetric polynomials in u,v). Also the square root in the
dimensional reduction had us abandon this approach. Perhaps there is some approach by “symmetrizing”
the equations and then using the elementary symmetric polynomials. We have not looked into this.

3.10 Other Notes and Miscellaneous Approaches

We took brief notes on fiber bundles, principal bundles, hopf fibration, hopf coordinates.
Hopf action is probably unrelated to our conjugation action.
We still haven’t fully fleshed out Hopf coordinates approach to this problem
We tried to blindly manipulate the above equations, tried to get squares, tried to get rid of cubics, tried to separate

variables to no avail. Question from Anunoy: Can we even expect the equations to directly give S2 × S2

when a lot of the time these character varieties are homeomorphic to pointy pillowcase spheres? Partial
answer: Yes, our u, v equations will have singular points, which correspond to the pillowcase points.

We tried using the conjugation to fix a representative and plug this into the equations (BAD).
Lessons from Boozer’s methods: Need to get a unique representative which give you equivalence relations. Need

to give a natural global parameterization of the restricting equations THEN enforce the representative from the
conjugacy class.

We learned about how free and transitive group actions on a space give homeomorphism. This is a nice way to
see the global structure.

We’ve been trying to fix a few variables and look at the resulting “pseudo-bundles” (not all fibers are homeomor-
phic), but it is hard to glue these together. Do these even have a name? Everything but a set of measure zero has
the same fiber?

We were also trying to look at low dimensional cross sections of the object, but these are also hard to glue together.
We tried enforcing artificial conditions on the equations that are unnatural for their structure.

3.11 Future Attempts

Keep trying to flesh out the substitution approach with eigenvalues. Check if enforcing the non-negativity of the
eigenvalues indeed gives us a bijection.

Use Hopf (z + wj) coordinates. Treats the 4 components of each quaternion more symmetrically, instead of having
1 real part be the focus. It seems like interpreting a quaternion as a separate real number with a 3D vector is the
wrong approach since these quantities are too closely tied together. Try to understand how conjugation works with
Hopf coordinates
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Perhaps there is no conceptual leap we are missing. Perhaps it really just an abstruse algebra
problem.

Explore determinantal identities. We noted that equations (49) may be written as

1 (84)

=det

 1 u1 u2
u1 1 u3
u2 u3 1

− 1− 1

2

det
 1 u1 u2
−u1 1 u3
−u2 −u2 1

+ det

 1 u1 u2
u1 1 u3
u2 u3 1


− 1

2
[det(123) + det(−123) + det(213) + det(−213) + det(132) + det(−132)− 6] , (85)

where for example the notation det(123),det(−123) means

det(123) = det

 1 u1 u2
v1 1 u3
v2 v3 1

 , det(−123) = det

 1 −u1 −u2
v1 1 −u3
v2 v3 1

 .

For example, det(132) is obtained by computing det(123) but swapping the indices on the ui, vi as 2 ↔ 3. Equation
(50) may be expressed similarly.

We did not further study these determinantal identities. Perhaps there is a more succint way of expressing the
equations (maybe 4-by-4 matrices?) We have noticed a relation between the form of the matrices appearing
here and those of the proof used in Goldman’s paper, mentioned in Section 3.5 of this technical report.
Furthermore, perhaps these determinant equations these are related to the Cayley-Menger determinants, which is
related to a generalization of Heron’s formula and related to Shoelace formula of expressing area as the sum of
determinants. This also somewhat relates to using the area of a hyperbolic triangle to study our problem.
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1 Preliminaries

1.1 Markings

Definition 1.1. An edge marking of a graph (V,E) is some y ∈ π1(G)E satisfying y(v,v) = 1 for any v ∈ V .
A marked graph is a graph K equipped with a marking y ∈ π1(G)E .

Definition 1.2. The pullback of a marking y ∈ π1(G)E under a graph homomorphism f : K ′ → K is

(f∗y)(v′,w′) = y(f(v′),f(w′))

Definition 1.3. A reduction of a marking y ∈ π1(G)E along a graph homomorphism q : K → K ′′ is some
y′′ ∈ π1(G)E

′′
such that q∗y = y′.

Proposition 1.4. Let q : K → K ′′ be a graph homomorphism, surjective on vertices and edges. Then q∗ is
injective on markings.

Proof. q∗ on markings is a restriction of the map

π1(G)E π1(G)E
′′q∗

Since E → E′′ is a surjection and surjections are epimorphisms in Set, q∗ is injective.

Corollary 1.5. The reduction of a marking along a surjective graph homomorphism is unique, if it exists.

1.2 The Second Obstruction Map

Definition 1.6. Let G be a Lie group, K = (V,E) be a graph. The associated commutator map is

µK,G : GV → GE (xv)v∈V 7→ ([xv, xw])(v,w)∈E

Remark 1.7. Note that Hom(ΓK , G) ∼= µ−1
K,G(1).
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Consider the following diagram

G̃V G̃E

GV GE

µK,G̃

µ

µK,G

where µ is defined by x 7→ µK,G̃(x̃) where x̃ is a lift of x.

Lemma 1.8. µ(x) is independent of choice of lift.

Proof. Let x̃, x̃′ be distinct lifts of x. Then for all v, x̃′
v = x̃vcv for some cv ∈ π1(G). Let e = (w, z) be an

arbitrary edge in E. Then since π1(G) ⊆ Z(G̃),

µπ,G̃(x̃
′)e = [x̃′

w, x̃
′
z] = [x̃wcw, x̃zcz]

= x̃wcwx̃zczc
−1
w x̃−1

w c−1
z x̃−1

z

= cwc
−1
w czc

−1
z [x̃w, x̃z]

= [x̃w, x̃z] = µπ,G̃(x̃)e

Lemma 1.9. µ is continuous.

Proof. Consider an evenly covered neighborhood U , so that there is a continuous section s : U → G̃V . Then
µ|U is the composition µG̃ ◦ s, so µ|U is continuous. Since the evenly covered neighborhoods of GV cover
GV , µ is continuous.

Definition 1.10. Let ΓK be the RAAG associated to K, G be a topological group. The obstruction map
is the continous map

oK : R(π,G) → π1(G)E x 7→ µ(x)

Proof of well-definedness. Since o(x) maps to the identity in GE , by exactness of π1(G) → G̃ → G, o(x) lifts
to an element of π1(G).

Lemma 1.11. Let c ∈ π1(G). The natural map G̃V → GV restricts to a surjective map q : µ−1

K,G̃
(c) → o−1

K (c).

Proof. Let x̃ ∈ µ−1
K,G(c), x be the image of x̃ in GV . Since k mapsto the identity in GE , by commutativity of

the diagram µK,G(x) = 1 and thus x ∈ Hom(ΓK , G). By construction, µπ,G̃(x̃) = µ(x) = o(x), so x ∈ o−1(c).

For surjectivity, any element x ∈ o−1(c) lifts to some x̃ ∈ G̃V . Since µK,G̃(x̃) = o(x), we have that

x̃ ∈ µ−1

π,G̃
(c), as desired.

Proposition 1.12 (Naturality). Let f : K ′ → K be a graph homomorphism. Then the diagram

Hom(ΓK , G) π1(G)E

Hom(ΓK′ , G) π1(G)E
′

oK

f∗ f∗

oK′

commutes; i.e.
f∗oK(x) = oK′(f∗x)

Proof. Let (v′, w′) ∈ E′. Then

(f∗oK(x))(v′,w′) = oK(x)(f(v′),f(w′))

= [xf(v′), xf(w′)]

= [(f∗x)v′ , (f∗x)w′ ]

= oK′(f∗x)
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Corollary 1.13 (Functoriality of o). Let y ∈ π1(G)E
′
be a marking. Then the map f∗ : Hom(ΓK , G) →

Hom(ΓK′ , G) restricts to a map f∗ : o−1
K (y) → o−1

K′ (f∗y).

2 SU(n) and U(n)-representations

Notation. Let Eλ,A denote the λ−eigenspace of A.

Lemma 2.1. Let A,B ∈ GLn(k) with A diagonalizable. Then [A,B] = zI iff

B(Eλ,A) = Ezλ,A

for all eigenvalues λ of A.

Notation. Define
CG(B, z) := {A | [A,B] = z}

We consider Lie groups satisfying the following property.

Property A Let S ⊆ G be a finite set. Then the inclusion Z(G) → CG(S) induces a surjection on π0.

Lemma 2.2. Let A ∈ CG(B) with A diagonalizable, and suppose for any eigenvalue λ of A, ∃λ′ with

Eλ,A ⊆ Eλ′,A′

Then A′ ∈ CG(B).

Proof. Let {λik} denote the eigenvalues of A with Eλik
,A ⊆ Eλ′

i,A
′ , so that Eλ′

i,A
′ ⊇

⊕
Eλik

,A. But⊕
i

⊕
k

Eλik
,A = V =

⊕
i

Eλ′
i,A

′

FTSOC suppose Eλ′
i,A

′ ⊋
⊕

Eλik
,A. Then the dimension of the left side is less than the dimension of the

right side, contradiction. So Eλ′
i,A

′ =
⊕

Eλik
,A, and thus B(Eλ′

i,A
′) = Eλ′

i,A
′ .

Lemma 2.3. SU(n) and U(n) satisfy property A.

Proof. Let A ∈ CG(S). Then for some unitary P , A = P diag{λ1, ..., λ1, ..., λr}P−1 where λi appears ei
times. For r = 1, A = λ1I ∈ Z(G), so suppose r > 1. Define

Z :=

{
(S1)r G = U(n)

{(λ1, ..., λr) ∈ (S1)r |
∏

λei
i = 1} G = SU(n)

Note that Z is connected. (todo)
Consider a path γ : [0, 1] → Z from (λ1, ..., λr) to (1, ..., 1). Then consider the path

A(t) = P diag{γ(t)1 : e1, ..., γ(t)r : er}P−1

By the previous lemma, A(t) ∈ CG(S) and A(1) ∈ Z(G), as desired.

Theorem 2.4. Let G be a connected Lie group satisfying property A. Then Hom(ΓK , G) is connected.

Proof. WLOG suppose V = {1, ..., n}. Let x = (xi)i∈V ∈ Hom(ΓK , G). We show inductively that x has a
path to some y ∈ Z(G)r ×Gn−r.

Suppose (xi) has a path to some (yi) ∈ Z(G)r−1 ×Gn−r+1. Let Sr denote the set of vertices adjacent to
r. Let γ : [0, 1] → CG(Sr) be a path from yr to an element zr ∈ Z(G). Define

η(t) = (y1, ..., yr−1, γ(t), yr+1, ..., yn)

Note that η(t) ∈ Hom(ΓK , G) since γ(t) commutes with yj for any j ∈ Sr. Thus η is a path from y to an
element of Z(G)r ×Gn−r, as desired. Thus by induction, x has a path to some y ∈ Z(G)n.

Let z1 = y. Let γi : zi ⇝ zi+1 be a path that sends the ith component to 1 and fixes the other
components. Since all other components are in Z(G), the ith component commutes with the components of
adjacent vertices, so γi(t) ∈ Hom(ΓK , G). Thus the composition of the γis is a path from y to (1, ..., 1).
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3 SO(3)-representations

Let G = SO(3), so that π1(G) = {±1} ⊆ S3.

Lemma 3.1. Let a, b ∈ S3. Then [a, b] = −1 iff a, b ∈ S2 and a ⊥ b.

Lemma 3.2. Let a, b ∈ S2 ⊆ S3. Then [a, b] = 1 iff a = ±b.

Proposition 3.3. Let (K, y) be a marked graph, and let (v, w) be a 1-marked edge whose endpoints have
−1-marked edges. Let K ′′ := K/{v, w} and q : K → K ′′ denote the quotient map. Then

a. If y has a reduction y′′, then y′′ is unique and

q∗ : o−1
K′′(y

′′) → o−1
K (y)

is a homeomorphism.

b. Otherwise, o−1
K (y) is empty.

Proof. (a): Since q is surjective on vertices, injectivity of q∗ is immediate. For surjectivity, let x ∈ o−1
K (y).

Since v and w have −1-marked edges, x̃v, x̃w ∈ S2. Then [x̃v, x̃w] = 1 =⇒ x̃v = ±x̃w =⇒ xv = xw. So
the lift x′′

q(v) = xv is well-defined. Any continuous bijection between compact spaces is a homeomorphism,
so q∗ is a homeomorphism.

(b): Since no reduction exists, ∃d, e ∈ E such that q(d) = q(e) but ye ̸= yd. WLOG let d = (v, z)
and e = (w, z). FTSOC suppose ∃x ∈ o−1(y). Then x̃v = ±x̃w so [x̃v, x̃z] = [x̃w, x̃z] ̸= [x̃v, x̃z], a
contradiction.

Proposition 3.4. Let (K, y) be a marked graph, and let v ∈ K such that for all w ∈ Nv, y(v,w) = 1. Then
Let K ′ = K ∖ {v}, i : K ′ → K denote the inclusion. Then

i∗ : oK(y) → oK′(i∗y)

induces a bijection on π0.

Proof. Since i∗ is surjective and proper, it suffices to show that the fibers are connected. Let x ∈ oK(y). By
lemma 2.3, there is a path γ : xv ⇝ 1 within the image of

⋂
w∈Nv

CS3(x̃w). So the path η which is γ on
the vth component and fixes all other components is in oK(y). So η : x⇝ (zw = xw, zv = 1), so the fiber is
connected.

Proposition 3.5. Let (K, y) be a marked graph satisfying

a. all edges are marked with -1

b. there is a sequence v1, ..., vn ∈ V such that Nvi ∩ {v1, ..., vi−1} has cardinality ≤ 2 for all i

Then o−1
K (y) is connected.

Proof. By induction on |V |. Pick v0 ∈ V , and let K ′ = K ∖ {vn}. By induction, K ′ satisfies (b). Consider
the surjection

i∗ : oK(−1) → oK′(−1)

The fiber is
(i∗)−1(x) ∼= {xn | [x̃n, x̃i] = −1 for all i ∈ Nn} = π

( ⋂
i∈Nn

CG(x̃i,−1)
)

where π is the projection S3 → SO(3). But |Nn| ≤ 2 and CG(x̃i,−1) is a circle in S2, so
⋂

i∈Nn
CG(x̃i,−1)

is

• S3 if |Nn| = 0

• S1 if |Nn| = 1
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• S1 or two antipodal points if |Nn| = 2

In all cases, the image in SO(3) is connected, so the fiber (i∗)−1(x) is connected. Thus i∗ is a proper map
with connected fibers and base, so the domain is connected.

Theorem 3.6. Let K be a disjoint union of cycles, trees, and complete graphs. Then the map

o : π0(Hom(ΓK ,SO(3))) → ZE
/2

is injective.

Proof. Consider a marking y. We claim that o−1(y) is connected. By propositions 3.3 and 3.4, we can reduce
to the case where y = (−1)v∈V and K ′ is a full subgraph or quotient graph of K. But any quotient or full
subgraph of a complete graph is a complete graph, and any quotient or full subgraph of a cycle or tree is a
disjoint union of cycles and trees.

Since o−1
K1⨿K2

((y1, y2)) = o−1
K1

(y1)× o−1
K2

(y2), it suffices to suppose K ′ is connected. For cycles and trees,

proposition 3.5 implies that o−1(y) is connected. For complete graphs, if |V | ≥ 4 then o−1(y) is empty,
otherwise by proposition 3.5 it is connected.

Remark 3.7. o is not injective for all graphs. For example, consider the marked graph (M,y)

a1

a2a3

b1

b2b3

-1

-1

-1

-1

-1

-1

-1

-1-1

Suppose (a1, a2, a3, b1, b2, b3) ∈ o−1(y). Then either

a. a2 = b1. Then a3 ̸= a2 = b1, so since a1 and b3 are both perpendicular to both a3 and b1, b3 = a1. By
the same logic, b2 = a3.

b. a2 ̸= b1. Then a1 = b2, a2 = b3, and b3 = a1.

So the fiber o−1(y) has two components: one with (b1, b2, b3) = (a2, a3, a1) and one with (b1, b2, b3) =
(a3, a1, a2). A similar construction yields marked graphs with 3-component and 2n-component fibers. (todo)

Theorem 3.8. Let K be a disjoint union of cycles and trees. Then the map

o : Hom(ΓK ,SO(3)) → ZE
/2

is surjective. Conversely, if o is surjective, then every non-cyclic component of K contains no 3-cycles.

Proof. Since o−1
K1⨿K2

((y1, y2)) = o−1
K1

(y1)× o−1
K2

(y2), WLOG suppose K is connected.

Suppose K is a cycle or tree. We claim that o−1(y) is nonempty. By proposition 3.3 and 3.4, we can
reduce to y = (−1)v∈V . By proposition 3.5, o−1(y) is nonempty.

Conversely, suppose K is not a cycle, but contains a 3-cycle. Then K contains a subgraph of the form
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Consider the marking y′ given by

1

-1

1

-1

Then o−1(y′) is empty. (todo) Now pick a reduction y of the marking y′. Since there is a map o−1
K (y′) →

o−1(y), o−1(y′) is empty.

4 SO(4)-representations

Let G = SO(4) so that π1(G) = {±1} ⊆ S3 ×S3. Let p denote the universal covering S3 ×S3 → SO(4). For
an element x̃ ∈ S3 × S3, (x̃)1 denotes the first component and (x̃)2 denotes the second component.

Definition 4.1. Construct an involution map (todo) σ : SO(4) → SO(4) as follows: for x ∈ SO(4), pick a
lift (y, z) ∈ S3 × S3. Then

σ(x) := p(y,−z)

Proof of well-definedness. Let (y, z) and (y′, z′) be distinct lifts, so that (y′, z′) = (−y,−z). Then

p(y,−z) = p(−y, z) = p(y′,−z′)

as desired.

Lemma 4.2. Let x, z ∈ SO(4). Then

a. [x̃, z̃] = 1 ⇐⇒ [σ̃(x), z̃] = 1

b. [x̃, z̃] = −1 ⇐⇒ [σ̃(x), z̃] = −1

Proof. Suffices to show that for x, z ∈ S3,
[x, z] = [−x, z]

But −1 ∈ Z(S3).

Proposition 4.3. Let (K, y) be a marked graph, and let (v, w) be a 1-marked edge whose endpoints have
-1-marked edges. Let K ′′ = K/{v, w} and q : K → K ′′ denote the quotient map. Then

a. If y has a reduction y′′, then
o−1
K (y) ∼= o−1

K′′(y)⨿ o−1
K′′(y)

where one component is the image of q∗ and the other component is the image of σw ◦ q∗ where σv is
σ on the vth component and the identity on other components.

b. Otherwise, o−1
K (y) is empty.
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Proof. For (a), let x ∈ o−1
K (y). Pick lifts x̃v = (av, bv) and x̃w = (aw, bw). Since v and w are adjacent to −1-

marked edges, av, bv, aw, bw anticommute with some other element, so are in S2. Thus [av, aw] = [bv, bw] = 1,
so av = kaw and bv = lbw for k, l ∈ ±1. We can choose a lift such that k = 1, so the cases are l = 1,−1.

Let x′′ ∈ o−1
K′′(y) be given by (x′′)q(u) = xu for u ̸= v, w, and (x′′)q(v) = xv. If l = 1, then x = q∗x′′;

otherwise, x = σv(q
∗x′′), as desired. So im q∗ and imσv◦q∗ cover the o−1

K (y). Conversely, im q∗ and imσw◦q∗
are disjoint since points in the former have k = l and points in the latter have k ̸= l.

Since q is a proper injection, q is a topological embedding, and since im q∗ and imσw ◦ q∗ are disjoint
closed sets, the homeomorphism holds.

For (b), since no reduction exists, ∃d, e ∈ E such that q(d) = q(e) but yd ̸= ye. WLOG let d = (v, z)
and e = (w, z). FTSOC suppose ∃x ∈ o−1

K (y). Then x̃v = (±1,±1)x̃w so [x̃v, x̃z] = [x̃w, x̃z] ̸= [x̃v, x̃z], a
contradiction.

Proposition 4.4. Let (K, y) be a marked graph, and let v ∈ K be a vertex such that all neighboring
edges are 1-marked. Let K ′ = K ∖ {v}, let i : K ′ → K denote the inclusion. Suppose in every connected

component of o−1
K′ (i∗y), ∃x′ such that [(x̃′

w)1, (x̃
′
u)1] = 1 for all w, u ∈ Nv. Then

i∗ : o−1
K (y) → o−1

K′ (i
∗y)

is surjective and induces a bijection on π0.

Proof. Let x′ ∈ oK′(i∗y). Note that any element of (i∗)−1(x) can be identified by the vth component. So

(i∗)−1(x) ∼= {z ∈ SO(4) | [z̃, x̃w] = 1 for all w ∈ Nv}

But that’s just the image of
⋂

w∈Nv
CS3×S3(x̃w)z.

If for some j = 1, 2 we have [(x̃′
w)j , (x̃

′
u)j ] = 1 for all w, u ∈ Nv, then all x̃′

w lie a common great circle
passing through 1. WLOG let j = 1, so

⋂
w∈Nv

CS3×S3(x̃w) is S
3 ×D or S1 ×D, where D = S3, S1, S0. In

any of these cases, the image in SO(4)V is connected. Conversely, if for all j = 1, 2, there exists w, u ∈ Nv

with [(x̃′
w)j , (x̃

′
u)j ] ̸= 1, then ⋂

w∈Nv

CS3×S3(x̃w) = S0 × S0

whose image is {p(1, 1), p(1,−1)}, a discrete set with 2 points. Let U denote this set of xs.
It suffices to show for a connected component C that (i∗)−1(C) is connected. Consider UC := U ∩ C,

and let ZC := C ∖ U . By assumption, ZC is nonempty. Let

AC = {x | i∗(x) ∈ C and x̃v = (1, 1)}
BC = {x | i∗(x) ∈ C and x̃v = (1,−1)}

and note that AC , BC
∼= C. Furthermore, note that UC ⊆ AC ∪BC , and AC and BC both intersect ZC .

Since i∗ : ZC → Z has connected fibers, it induces a bijection on π0, so every connected component of
ZC intersects AC and BC . So ZC ∪ AC is connected, and thus ZC ∪ AC ∪ Bc = ZC ∪ UC = (i∗)−1(C) is
connected.

Lemma 4.5. Let K be a tree, v be a vertex of K. Then K ′ := K ∖ {v} is a disjoint union of trees, and Nv

contains at most one vertex from each component of K ′.

Lemma 4.6. Let (Ki, yi) be a marked tree, (K, y) =
∐
(Ki, yi). Let N ⊆ V contain at most one vertex

from each component of K. Then in every connected component of o−1
K (y), ∃x such that ∀u,w ∈ N ,

[(x̃w)1, (x̃u)1] = 1.

Proof. First, suppose K has no vertex whose neighboring edges are all 1-marked. Note

o−1
K (y) ∼=

∏
i

o−1
Ki

(yi)

Let x = (x1, ..., xr) ∈ o−1
K (y), where xi denotes the component in o−1

Ki
(yi).
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Suppose ∃vi ∈ N ∩ Vi. By assumption, vi is unique. Let zi = (ṽi). Since the conjugation action of S3

acts transitively on ℜ−1(ℜ(zi)) ∼= S2, ∃g ∈ S3 such that gzig
−1 ∈ S1 ⊆ C. Let ai = (g, 1)xi(g, 1)

−1
. If

̸ ∃vi ∈ N ∩ Vi, let ai = xi. Now let
a = (a1, ..., ar)

By construction, for any v ∈ N , (ãv)1 ∈ S1 ⊆ C, so all (ãv)1 commute. Furthermore, since S3 is connected
and conjugation is continuous, there is a path from xi to ai within o−1

Ki
(yi), so there is a path from x to a

within o−1
K (y).

Now suppose K has m vertices whose neighboring edges are all 1-marked. Let v be one such ver-
tex. By induction on m, K ′ := K ∖ {v} has the property that in every component C of o−1

K′ (i∗y),
∃xC∀u, v[(x̃w)1, (x̃u)1] = 1.

• First suppose v ̸∈ N . By the previous proposition, the map i∗ : o−1
K (y) → o−1

K′ (i∗y) is surjective and
induces an isomorphism on π0, so for every path component C, lift xC along i∗, so that x̃C satisfies
the desired property for (i∗)−1(C).

• Now suppose v ∈ N . By the previous proposition, the map i∗ : o−1
K (y) → o−1

K′ (i∗y) is surjective and
induces an isomorphism on π0, so for every path component C, lift x := xC along i∗. Furthermore, by
proposition 2.(todo) , there is a path from (x̃v)1 → ±1 := av within the centralizers of x̃w∈Nv . Thus
there is a path from x to a where

aw =

{
av w = v

xw w ̸= v

and a satisfies the desired property.

Lemma 4.7. Let (K, y) be a marked line with at least two −1-marked edges, and let N be the endpoints
of K. Then in every connected component of o−1

K (y), ∃x such that [(x̃v)1, (x̃w)1] = 1 for any v, w ∈ N .

Proof. WLOG label V = {1, ..., n}, where (i, i + 1) ∈ E, so that N = {1, n}. Let x ∈ o−1
K (y), let C denote

the connected component of x.
Consider the equivalence relation v ∼ v+ 1 iff (v, v+ 1) is 1-marked, and let W = V/∼. By assumption,

there are at least 3 equivalence classes in W . W has a natural ordering by [v] < [w] ⇐⇒ v < w. For a class
[v], let ρ[v] denote the predecessor of [v] under that ordering. Define a map

ϕ : W → {i, j, k}

by

ϕ([v]) =


i [v] = [1], [n]

j [v] ̸= [1], [n] and ϕ(ρ[v]) ̸= j

k [v] ̸= [1], [n] and ϕ(ρ[v]) = j

Note that ϕ(ρ[v]) ⊥ ϕ([v]).
Now we inductively construct a sequence ar ∈ C such that (ãrv)1 ∈ ⟨1, ϕ([v])⟩ for all v ≤ r. First, let

g ∈ S3 such that g(x̃1)1g
−1 ∈ ⟨1, i⟩. Let γ : 1⇝ g in S3, and define

η(t) = p(γ(t), 1) · x · p(γ(t), 1)−1

Since conjugation preserves commutators equal to ±1, η(t) ∈ o−1
K (y), and thus η(t) ∈ C. Let a1 = η(1).

For r > 1, the construction is as follows:

• Suppose (r − 1, r) is 1-marked, and (ãr−1
r−1)1 ̸∈ Z(S3). Then since [(ãr−1

r−1)1, (ã
r−1
r )1] = 1, we have that

(ãr−1
r )1 ∈ ⟨1, ϕ(r)⟩ = ⟨1, ϕ(r − 1)⟩. So let ar := ar−1.
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• Suppose (r, r− 1) is 1-marked, and (ãr−1
r )1 ∈ Z(S3). Note ∃g ∈ S3 with g(ãr)1g

−1 ∈ ⟨1, ϕ(r)⟩, and let
γ : 1⇝ g. Now consider the path

η(t)v =

{
ar−1
v v < r

p(γ(t), 1) · ar−1
v · p(γ(t), 1)−1 v ≥ r

Since conjugation preserves commutators equal to ±1, oK(η(t)) agrees with y on all edges other than

(r− 1, r). For (r− 1, r), since (ãr−1
r−1)1 = (η̃(t))1 ∈ Z(G), [(η̃(t)r−1)1, (η̃(t)r)1] = 1, so η(t) ∈ o−1

K (y). So
let ar := η(1).

• Suppose (r, r − 1) is -1-marked. Note that (ãr−1
r−1)1 = ϕ(r − 1) ⊥ (ãr−1

r )1, ϕ(r). Let SO(2)z denote

the subgroup of rotations in SO(3) that fix z := (ãr−1
r−1)1. By transitivity of SO(2)z ↷ S3 ∩ z⊥,

∃g ∈ SO(2)z such that g((ãr−1
r )1) = ϕ(r). Since SO(2)z is connected, there is a path γ : 1⇝ g within

SO(2)z ⊆ SO(3), lifting to a path γ̃ : 1⇝ g̃ within S3 for some lift g̃.

Let η : [0, 1] → C be a path by

η(t)v =

{
ar−1
v v < r

p(γ̃(t), 1) · ar−1
v · p(γ̃(t), 1)−1 v ≥ r

Note that oK(η(t)) agrees with y on all edges other than (r − 1, r). For (r − 1, r), since γ̃(t) fixes z⊥,

(η̃(t)r)1 ⊥ z, so [z = (η̃(t)r−1)1, (η̃(t)r)1] = −1, so η(t) ∈ o−1
K (y). Let ar := η(1).

Now (ãnn)1, (ã
n
1 )1 ∈ ⟨1, i⟩ and thus commute, so an is the desired x.

Proposition 4.8. Let (K, y) be a marked tree with y = −1 on all edges. Then o−1
K (y) is connected.

Proof. By induction on |V |. Let K ′ = K ∖ {v} for some leaf v. Let w be the unique vertex connected to v.
Consider the map

i∗ : o−1
K (y) → o−1

K′ (y
′)

By induction, the base is connected, so since i∗ is proper it suffices to show that the fibers of i∗ are nonempty
and connected. But the fiber (i∗)−1(x′) can be identified with

{z ∈ SO(4) | [z̃, x̃′
w] = −1} ∼= p(CS3×S3(x̃′

w,−1))

But CS3×S3(x̃′
w,−1) ∼= CS3((x̃′

w)1,−1) × CS3((x̃′
w)2,−1) which is a product of S1 and S3ss and thus con-

nected.

Theorem 4.9. Let (K, y) be a disjoint union of marked trees. Let m denote the number of 1-marked edges
whose endpoints have −1-marked edges. Then o−1

K (y) has 2m connected components.

Proof. By proposition 4.3, it suffices to show that if m = 0 then o−1
K (y) is connected. Let r denote the

number of vertices whose edges are all 1-marked. We proceed by induction on r. The base case r = 0 is
proposition 4.8. Let v be one such vertex, let K ′ = K ∖ {v}, y′ = i∗y where i : K ′ → K. By inductive
hypothesis, o−1

K′ (y′) is connected. Note that K ′ is a disjoint union of trees, and Nv contains at most one
vertex from each component. By lemma 4.6 and proposition 4.4, o−1

K (y) → o−1
K′ (y′) induces a bijection on

connected components, so o−1
K (y) is connected.

5 PSL(2,C)-representations
Let ωn denote a primitive nth root of unity.

Lemma 5.1. CSL(n,C)(B,ωn) is connected or empty.
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Proof. Let A ∈ CSL(n,C)(B,ω). By lemma,

A = P ′ diag{λ, ..., ωn−1λ}P ′−1

with λn =
∏

i ω
i = (−1)n+1. Thus λ is an nth root of unity or odd 2nth root of unity, so A has the form

P diag{1, ..., ωn−1}P−1 or P diag{ω2n, ..., ω2n · ωn−1}P−1 with Bpi ∈ ⟨pi+1⟩. Let D = diag{ω2n, ..., ω2n ·
ωn−1} or diag{1, ..., ωn−1}. Conversely, any matrix of the above form is in CSL(n,C)(B,ω). So

CSL(n,C)(B,ω) = {PDP−1 | Bpi ∈ ⟨pi+1⟩ for i = 1, ..., n}

Consider the map

ϕ : ker(Bn − I)∖
n−1⋃
m=1

ker(Bm − I) → CSL(n,C)(B,ω) v 7→ PvDP−1
v

where Pv =
[
v Bv ... Bn−1v

]
. Since v,Bv, ..., Bn−1v are distinct, Pv is invertible, so the map is well-

defined. For surjectivity, any PDP−1 ∈ CSL(n,C)(B,ω) has p0, Bp0, ..., B
n−1p0 distinct, so p0 ∈ (Bn − I)∖⋃n−1

m=1 ker(B
m − I) and ϕ(p0) = PDP−1.

Lemma 5.2. Let n be odd (resp. even). Then CSL(n,C)(B,ωn) is nonempty iff the eigenvalues of B are
1, ω, ..., ωn−1 (resp. ω2n, ..., ω2nω

n−1
n ).

Proof. Suppose ∃A ∈ CSL(n,C)(B,ωn), then [A,B] = ω =⇒ [B,A] = ω−1. So by lemma we have A(Eλ,B) =

Eω−1λ,B so B has eigenvalues λ, λω, ..., λωn−1. But
∏n−1

i=0 λωi = λn = (−1)n+1, so λ is an nth root of unity
(resp. odd 2nth root of unity).

For the backwards direction, let vi ∈ Eωi,B have norm 1. Then construct

A = PFP−1

where P =
[
v0 ... vn−1

]
and F has 1s in the (i, i+ 1)th entries and (−1)n+1 in the (n, 1)th entry. Then

detA = 1 and A(vi) = ±vi+1, so by lemma [A,B] = ω.

Lemma 5.3. The image of the space of matrices in CSL(n,C)(B) with eigenvalues 1, ..., ωn−1 for n odd, or
ω2n, ..., ω2nω

n−1
n for n even, has at most (n − 1)! components. If B is diagonalizable, then it has exactly

(n− 1)! components.

Proof. The space of n distinct 1-dimensional subspaces fixed by B is the space of subspaces contained in
eigenspaces of B.

Theorem 5.4. Let ΓK be the RAAG associated to a tree. Then the map

o2 : Hom(ΓK ,PSL(2,C)) → ZE
/2

is injective on connected components.

Proof. (todo)
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