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Abstract

The L’vov-Kaplansky Conjecture is a longstanding open question in the
field of Algebra, which asks if the image of a multilinear polynomial acting
on the space of 𝑛× 𝑛 matrices is a subspace. We consider a weakening of
the conjecture using an analytic lens: the Density Dimension-Free L’vov-
Kaplansky Conjecture. This asks whether any multilinear polynomial
eventually attains density in a subspace for large enough matrices with
complex entries. Using an auxiliary map, we prove that density of the
image on 2× 2 matrices is guaranteed by a linear independence condition.
Moreover, we give conditions on factorizations of multilinear polynomials
that, if satisfied, guarantee density of the image within the traceless
matrices or full matrix algebra. We provide concrete open problems that
would shed further insight into the conjecture.

1 Introduction and Backgound

Noncommutative functions show interactions between variables that do not
commute with each other. The theory surrounding these objects is based in the
idea that order matters for noncommuting variables. For example, 𝑛×𝑛 matrices
with elements in the complex numbers (denoted 𝑀𝑛(C)) are not commutative
with each other under standard matrix multiplication. We can illustrate this by
an example: (︂

1 2
3 4

)︂(︂
4 3
2 1

)︂
=

(︂
8 5
20 13

)︂
(︂
4 3
2 1

)︂(︂
1 2
3 4

)︂
=

(︂
13 20
5 8

)︂
.

∗Bryn Mawr College
†Longwood University
‡Bucknell University
§James Madison University

1



The desire to understand the structure of matrices stems from many fields in the
sciences, notably engineering and physics. This summer, we aim to generalize
results related to how matrices act under special objects called multilinear
polynomials in relation to the L’vov-Kaplansky Conjecture.

Conjecture 1.1 (L’vov-Kaplansky). If 𝑝 be a multilinear polynomial, then the
image of 𝑝 on 𝑀𝑛(C) is a subspace.

1.1 Multilinear Polynomials

Consider a polynomial in several noncommuting variables (𝑋1, ..., 𝑋𝑑) with no re-
lations between them. We denote this by 𝑝 ∈ C⟨𝑋1, ..., 𝑋𝑑⟩, where C⟨𝑋1, ..., 𝑋𝑑⟩
is the free algebra generated by 𝑋1, ..., 𝑋𝑑. For example, we can define 𝑝1 by

𝑝1(𝑋1, 𝑋2) = 𝑋2
1 + 3𝑋2 + 2.

For another example, consider 𝑝2 by

𝑝2(𝑋1, 𝑋2, 𝑋3) = 𝑋1𝑋2𝑋3.

We are particularly interested in the image of these polynomials evaluated on
𝑛× 𝑛 matrices, defined as follows:

Definition 1.2. The image on 𝑀𝑛(C) of a polynomial 𝑝 ∈ C⟨𝑋1, ..., 𝑋𝑑⟩ is the
set

im𝑛(𝑝) = {𝑝(𝑍) ∈ 𝑀𝑛(C) : 𝑍 ∈ 𝑀𝑛(C)𝑑}.

For our study, we are not interested in all polynomials, but particular types.
The L’vov-Kaplansky Conjecture focuses on objects known as multilinear poly-
nomials. A more general type of polynomial known as homogeneous polynomials
will also be briefly explored.

Definition 1.3. A polynomial 𝑝(𝑋1, · · · , 𝑋𝑛) is homogeneous of degree 𝑑 if for
all 𝜆,

𝑝(𝜆𝑋1, ..., 𝜆𝑋𝑛) = 𝜆𝑑𝑝(𝑋1, · · · , 𝑋𝑛).

Importantly, homogeneous polynomials scale nicely when each variable is
scaled. Take, for instance,

𝑝(𝑋1, 𝑋2) = 𝑋2
1 +𝑋1𝑋2,

which is homogeneous of degree 2. Note that 𝑝(3𝑋1, 3𝑋2) = 9𝑋2
1 + 9𝑋1𝑋2 =

9𝑝(𝑋1, 𝑋2) = 32𝑝(𝑋1, 𝑋2).
We can also require that our polynomial be linear in each variable, which

can add more structure.

Definition 1.4. A polynomial 𝑝(𝑋1, · · · , 𝑋𝑑) is multilinear if each term in 𝑝
contains exactly each variable exactly once. Every such polynomial 𝑝 has the
form

𝑝(𝑋1, ..., 𝑋𝑑) =
∑︁
𝜎∈𝑆𝑑

𝛼𝜎𝑋𝜎(1) · · ·𝑋𝜎(𝑑).
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We list some examples of multilinear polynomials below:

• 𝑝1(𝑋,𝑌 ) = 𝑋𝑌 − 𝑌 𝑋

• 𝑝2(𝑋,𝑌 ) = 2𝑋𝑌 + 6𝑌 𝑋

• 𝑝3(𝑋,𝑌, 𝑍,𝑊 ) = 3𝑋𝑌 𝑍𝑊

• 𝑝4(𝑋,𝑌, 𝑍) = 𝑋𝑌 𝑍 + 𝑌 𝑍𝑋 + 2𝑋𝑍𝑌 + 𝑖𝑌 𝑋𝑍 + 𝑍𝑌 𝑋 + 𝑍𝑋𝑌

Some nonexamples of multilinear polynomials include:

• 𝑝5(𝑋,𝑌, 𝑍) = 𝑋𝑌 + 𝑌 𝑍

• 𝑝6(𝑋,𝑌 ) = 𝑋2 + 𝑌 2

• 𝑝7(𝑋,𝑌, 𝑍) = 𝑋𝑌 𝑍 + 𝑍𝑌 𝑍

Multilinear polynomials have some nice properties. For one, every multilinear
polynomial is homogeneous. Additionally, every multilinear polynomial is linear
in each of its variables separately:

𝑝(𝑋1 + 𝑌1, 𝑋2, · · ·𝑋𝑛) = 𝑝(𝑋1, 𝑋2, · · · , 𝑋𝑛) + 𝑝(𝑌1, 𝑋2, · · · , 𝑋𝑛).

However, multilinear polynomials are not simultaneously linear in each of their
variables.

1.2 Special Multilinear Polynomials

There are a few special types of multilinear polynomials that are important to
the study of the L’vov-Kaplansky Conjecture.

Definition 1.5. A multilinear polynomial 𝑝 is a polynomial identity on 𝑀𝑛(C)
if im𝑛(𝑝) = {0}.

If 𝑝 is a polynomial identity on 𝑀𝑛(C), then 𝑝 is also a polynomial identity
on 𝑀𝑚(C) for all 𝑚 ≤ 𝑛.

Definition 1.6. A multilinear polynomial 𝑝 is the standard polynomial on
𝑀𝑛(C) if 𝑝 is of the form

𝑝(𝑋1, ..., 𝑋2𝑛) =
∑︁

𝜎∈𝑆2𝑛

sgn(𝜎)𝑋𝜎(1) · · ·𝑋𝜎(2𝑛)

.

By the Amitsur-Levitzki Theorem [1], the standard polynomial is the poly-
nomial identity on 𝑀𝑛(C) of lowest degree.

Definition 1.7. A multilinear polynomial 𝑝 is a central polynomial for 𝑀𝑛(C)
if im𝑛(𝑝) ⊆ C𝐼𝑛.
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2 Linear Algebra Review

A well-known result of Linear Algebra states that the image of a linear map is a
subspace. The L’vov-Kaplansky Conjecture asks if the same holds for multilinear
polynomials. Using the framework of Sheldon Axler’s textbook Linear Algebra
Done Right [2], we reviewed topics such as vector spaces, linear independence,
and similarities. Some of the relevant topics that we covered are presented below.
We specifically looked at vector spaces over C.

2.1 Vector Spaces and Subspaces

Definition 2.1. A set 𝑉 is a vector space over C if it has two operations–addition
and scalar multiplication–which meet the following axioms:

1. Addition is commutative: for all 𝑥, 𝑦 ∈ 𝑉 , we have 𝑥+ 𝑦 = 𝑦 + 𝑥.

2. Addition and scalar multiplication are associative: for all 𝑥⃗, 𝑦⃗, 𝑧⃗ ∈ 𝑉 and
𝑎, 𝑏 ∈ C, we have (𝑥⃗+ 𝑦⃗) + 𝑧⃗ = 𝑥⃗+ (𝑦⃗ + 𝑧⃗) and 𝑎(𝑏𝑥⃗) = (𝑎𝑏)𝑥⃗.

3. There exists an additive identity 0 in 𝑉 such that 0 + 𝑣⃗ = 𝑣⃗ for all 𝑣⃗ ∈ 𝑉 .

4. Every element 𝑥⃗ ∈ 𝑉 has an additive inverse: there exists some −𝑣⃗ such
that 𝑣⃗ +−𝑣⃗ = 0.

5. There exists a scalar 1 ∈ C such that 1𝑥⃗ = 𝑥⃗ for all 𝑥⃗ ∈ 𝑉 .

6. Addition and scalar multiplication distribute: for all 𝑥⃗, 𝑦⃗ ∈ 𝑉 and 𝑎, 𝑏 ∈ C
we have (𝑎+ 𝑏)𝑥⃗ = 𝑎𝑥⃗+ 𝑏𝑥⃗ and 𝑎(𝑥⃗+ 𝑦⃗) = 𝑎𝑥⃗+ 𝑏𝑦⃗.

Examples of vector spaces over C include C𝑛, R𝑛, 𝒫𝑛(𝑥) = {𝑎0 + 𝑎1𝑥+ · · ·+
𝑎𝑛𝑥

𝑛 : 𝑎𝑖 ∈ C}. Of particular interest to this project is the 𝑛× 𝑛 matrices with
complex coefficients, denoted 𝑀𝑛(C).

Definition 2.2. Given 𝑉 , a vector space over C and 𝑊 ⊆ 𝑉 , then 𝑊 is a
subspace of 𝑉 if 𝑊 is a vector space over C.

While verifying all of the axioms that determine if a set is a vector space
are labor-intensive, given a subset of a vector space, there is a shorter list of
necessities.

Theorem 2.3. If 𝑉 is a vector space over C and 𝑊 ⊆ 𝑉 , then 𝑊 is a subspace
of 𝑉 if and only if

1. We have 0 ∈ 𝑊 .

2. If 𝑥⃗ ∈ 𝑊 , then 𝑐𝑥⃗ ∈ 𝑊 for all 𝑐 ∈ C.

3. For all 𝑥⃗, 𝑦⃗ ∈ 𝑊 , we have 𝑥⃗+ 𝑦⃗ ∈ 𝑊 .
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When we consider the L’vov-Kaplansky conjecture, it will be the third
requirement, additivity, that will pose problems for the images of multilinear
polynomials. It is straightforward to show that the zero matrix is in the image of
any multilinear polynomial. Also, due to the scaling of homogeneous polynomials,
and thus multilinear polynomials, verifying the second condition is likewise
straightforward. However, showing that additivity is satisfied is much more
difficult.

2.2 Linear Independence and Span

In this section, we will always assume that 𝑉 is a finite-dimensional vector space
over C.

Definition 2.4. We say that a set of vectors {𝑣1, 𝑣2, ..., 𝑣𝑛} ⊆ 𝑉 are linearly
independent if

𝑐1𝑣1 + 𝑐2𝑣2 + ...+ 𝑐𝑛𝑣𝑛 = 0

then 𝑐1, ..., 𝑐𝑛 = 0.

Linear independence will be particular useful when we consider the images
of multilinear polynomials on 2× 2 matrices.

Definition 2.5. The span of a set of vectors {𝑣1, 𝑣2, ..., 𝑣𝑛} ⊆ 𝑉 is given by

span{𝑣1, 𝑣2, ..., 𝑣𝑛} = {𝑐1𝑣1 + 𝑐2𝑣2 + ...+ 𝑐𝑛𝑣𝑛 : 𝑐1, ..., 𝑐𝑛 ∈ C}.

For any set of vectors {𝑣1, 𝑣2, ..., 𝑣𝑛} ⊆ 𝑉 , we have that span{𝑣1, 𝑣2, ..., 𝑣𝑛}
is always a subspace of 𝑉 .

Definition 2.6. We say that a set of vectors {𝑣1, 𝑣2, ..., 𝑣𝑛} ⊆ 𝑉 form a basis
for 𝑉 if span{𝑣1, 𝑣2, ..., 𝑣𝑛} = 𝑉 and {𝑣1, 𝑣2, ..., 𝑣𝑛} are linearly independent.

Any basis for 𝑉 has the same number of elements. This is the dimension of
𝑉 , denoted dim(𝑉 ).

2.3 Similarities

One topic of linear algebra that is particularly relevant to the L’vov-Kaplansky
Conjecture is conjugation by similarities.

Definition 2.7. We say that two matrices, 𝐴,𝐵 ∈ 𝑀𝑛(C) are similar if there
exists an invertible matrix 𝑆 ∈ 𝑀𝑛(C) such that 𝐴 = 𝑆𝐵𝑆−1.

By the Schur Decomposition, we know that any matrix in 𝑀𝑛(C) is similar,
and actually unitarily equivalent, to an upper triangular matrix, with entries
only on and above the main diagonal.

Definition 2.8. We say that a set Ω ⊆ 𝑀𝑛(C) is invariant under conjugation
by similarities if we have Ω = 𝑆Ω𝑆−1 for all invertible matrices 𝑆 ∈ 𝑀𝑛(C)
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This is particularly relevant to the L’vov-Kaplansky conjecture because for
any polynomial 𝑝 ∈ C⟨𝑥1, ..., 𝑥𝑑⟩, and in particular, for multilinear polynomials,
we have the following equality for all invertible 𝑆 ∈ 𝑀𝑛(C):

𝑆−1𝑝(𝑋1, ..., 𝑋𝑑)𝑆 = 𝑝(𝑆−1𝑋1𝑆, ..., 𝑆
−1𝑋𝑑𝑆)

where (𝑋1, ..., 𝑋𝑑) ∈ 𝑀𝑛(C)𝑑. This implies that 𝑆−1𝑝(𝑋1, ..., 𝑋𝑑)𝑆 ∈ im𝑛(𝑝) for
all invertible 𝑆 ∈ 𝑀𝑛(C). Therefore, we have that im𝑛(𝑝) is invariant under
similarities. It has been shown [4] that the only subspaces 𝑉 ⊆ 𝑀𝑛(C) that are
invariant under conjugation by similarities are

1. The zero matrix: {0}

2. Scalar multiples of the identity matrix: C𝐼𝑛

3. Trace zero matrices: 𝑀0
𝑛(C)

4. The full space: 𝑀𝑛(C).

This gives a slightly narrower focus to the search for subspaces as the image of
multilinear polynomials. If we were to find a multilinear polynomial that did
not have one of these four subspaces as its image, this would be a contradiction
of the L’vov-Kaplansky Conjecture.

2.4 Eigenvalues, Determinant, and Trace

In attempting to prove the L’vov-Kaplansky Conjecture, we will utilize properties
of matrices.

Definition 2.9. We say that 𝜆 ∈ C is an eigenvalue of a matrix 𝐴 ∈ 𝑀𝑛(C) if
there exists a vector 𝑣⃗ such that

𝐴𝑣⃗ = 𝜆𝑣⃗.

We call 𝑣⃗ an eigenvector of 𝐴.

Definition 2.10. We say that a matrix 𝐴 ∈ 𝑀𝑛(C) is diagonalizable if there
exists an invertible matrix 𝑆 ∈ 𝑀𝑛(C) such that 𝑆𝐴𝑆−1 is a diagonal matrix.

A matrix 𝐴 ∈ 𝑀𝑛(C) is diagonalizable if 𝐴 has 𝑛 distinct eigenvalues.
However, a matrix may be diagonalizable even if it does not have 𝑛 distinct
eigenvalues, an example is the 𝑛×𝑛 identity matrix, 𝐼𝑛. In addition to providing
insight into diagonalizability, the eigenvalues of a matrix are the building blocks
of the characteristic polynomial of a matrix, which gives important information
about the matrix itself.

Definition 2.11. The characteristic polynomial of a matrix 𝐴 ∈ 𝑀𝑛(C) with
distinct eigenvalues 𝜆1, ..., 𝜆𝑛 and multiplicities 𝑑1, ..., 𝑑𝑛 is the commutative
polynomial

𝑞(𝑧) = (𝑧 − 𝜆1)
𝑑1 ...(𝑧 − 𝜆𝑛)

𝑑𝑛 ,
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By the Caley-Hamilton Theorem, if 𝑞 is the characteristic polynomial of a
matrix 𝐴, then 𝑞(𝐴) = 0. Other information about matrices is also related by
the eigenvalues.

Definition 2.12. The determinant of a matrix 𝐴 ∈ 𝑀𝑛(C) is the product of
the eigenvalues of 𝐴. We denote the determinant of 𝐴 by det(𝐴).

The determinant of a matrix is fairly straightforward to compute in the 2× 2
case. For the matrix (︂

𝑎 𝑏
𝑐 𝑑

)︂
we have the determinant is 𝑎𝑑− 𝑏𝑐. However, for larger matrix sizes, finding the
determinant, while possible, is more computationally difficult. A well-known
result relates the determinant of a matrix 𝐴 to invertiblity.

Theorem 2.13. A matrix 𝐴 ∈ 𝑀𝑛(C) is invertible if and only if det(𝐴) ̸= 0.

Definition 2.14. The trace of a matrix 𝐴 is the sum of the values on the main
diagonal of 𝐴. The trace of a matrix is also the sum of its eigenvalues. We
denote the trace of 𝐴 by tr(𝐴)

For example, we have that the trace of the following matrix is 9:(︂
4 6
−1 5

)︂
We have for any 𝐴,𝐵 ∈ 𝑀𝑛(C), tr(𝐴𝐵) = tr(𝐵𝐴). This is true for any cyclic
permutation of matrices, for example tr(𝑋𝑌 𝑍) = tr(𝑍𝑌 𝑋) but tr(𝑋𝑌 𝑍) ̸=
tr(𝑋𝑍𝑌 ).

Remark 2.15. For a matrix 𝐴 ∈ 𝑀𝑛(C), the determinant and trace are
similarity invariant. That is, for any invertible 𝑆 ∈ 𝑀𝑛(C), we have det(𝐴) =
det(𝑆𝐴𝑆−1) and tr(𝐴) = tr(𝑆𝐴𝑆−1).

In addition to being closely related to eigenvalues, determinant and trace
are also closely related to the characteristic polynomial. By the LeVerrier
Characteristic Polynomial Recursion [7], the coefficients of the characteristic
polynomial of a matrix 𝐴 are related to the determinant, the trace, and trace of
powers of 𝐴. Thus, the determinant and trace will be useful tools in our study
of the L’vov-Kaplansky Conjecture.

2.5 The L’vov-Kaplansky Conjecture

Our main area of study revolves around the previously stated L’vov-Kaplansky
Conjecture, which we will state again due to its importance. For our purposes,
we will consider the conjecture over the complex numbers.

Conjecture 1.1 (L’vov-Kaplansky). If p is a multilinear polynomial, then the
image of 𝑝 on 𝑀𝑛(C) is a subspace.
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While amazingly simple to state, the conjecture has remained unproved for
decades, although partial results exist [6, 5, 13]. A relaxed conjecture explores if
the L’vov-Kaplansky Conjecture is true for large enough matrix sizes.

Conjecture 2.16 (Dimension-Free L’vov-Kaplansky). If 𝑝 is a multilinear
polynomial, then there exists an 𝑁 ∈ N such that 𝑛 ≥ 𝑁 implies that im𝑛(𝑝) is
a subspace.

We propose another relaxation that allows us to tackle the L’vov-Kaplansky
Conjecture from an analytical approach.

Conjecture 2.17 (Density Dimension-Free L’vov-Kaplansky Conjecture). If 𝑝
is a multilinear polynomial, then there exists 𝑁 ∈ N so that for 𝑛 ≥ 𝑁 , im𝑛(𝑝)
is dense in a subspace of 𝑀𝑛(C).

We present two different definitions of density below. We note that for our
purposes, all statements will remain true if we replace Zariski density with
Euclidean density [12].

Definition 2.18. A set 𝑆 ⊆ C𝑛 is Euclidean dense if every point 𝑧 ∈ C𝑛 is
arbitrarily close to a point in 𝑆 (using Euclidean distance).

Definition 2.19. A set 𝑆 ⊆ C𝑛 is Zariski dense if 𝑆 is everything except
possibly the zero set of a non-zero polynomial.

3 Bilinear Case

Definition 3.1. A bilinear polynomial is a multilinear polynomial of degree 2.
Bilinear polynomials can be written as 𝑝(𝑋,𝑌 ) = 𝑎𝑋𝑌 + 𝑏𝑌 𝑋 for some 𝑎, 𝑏 ∈ C.

We will show that all bilinear polynomials satisfy the full L’vov-Kaplansky
Conjecture. To do this, we will first prove a classical result about a famous
bilinear polynomial.

Definition 3.2. The commutator is the bilinear polynomial

𝑝(𝑋,𝑌 ) = 𝑋𝑌 − 𝑌 𝑋.

The commutator is denoted [𝑋,𝑌 ].

Theorem 3.3. For the commutator, 𝑝(𝑋,𝑌 ) = [𝑋,𝑌 ], we have im𝑛(𝑝) =
𝑀0

𝑛(C).

While this result was proved in [11], we provide a proof of this theorem in
English to aid with understanding. We will utilize two lemmas to prove this
theorem.

Lemma 3.4. For the commutator, 𝑝(𝑋,𝑌 ) = [𝑋,𝑌 ], we have all zero-diagonal
matrices in im𝑛(𝑝).
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Proof. Let 𝑍 ∈ 𝑀𝑛(C) be an arbitrary matrix with zeroes along the main
diagonal. Thus, we have

𝑍 =

⎛⎜⎜⎜⎝
0 𝑧12 . . . 𝑧1𝑛
𝑧21 0 . . . 𝑧2𝑛
...

...
. . .

...
𝑧𝑛1 𝑧𝑛2 . . . 0

⎞⎟⎟⎟⎠.

We will show that there exist matrices 𝐴,𝐵 ∈ 𝑀𝑛(C) such that 𝑍 = [𝐴,𝐵], and
hence 𝑍 ∈ im𝑛(𝑝).
Let 𝐴 ∈ 𝑀𝑛(C) be a diagonal matrix with distinct entries. Hence,

𝐴 =

⎛⎜⎜⎜⎝
𝑎11 0 . . . 0
0 𝑎22 . . . 0
...

...
. . .

...
0 0 . . . 𝑎𝑛𝑛

⎞⎟⎟⎟⎠
where 𝑎𝑖𝑖 ̸= 𝑎𝑗𝑗 for 𝑖 ̸= 𝑗. Now, we define a matrix 𝐵 ∈ 𝑀𝑛(C) entry-wise. Let

𝑏𝑖𝑗 =

{︃
0 if 𝑖 = 𝑗

𝑧𝑖𝑗
𝑎𝑖𝑖−𝑎𝑗𝑗

if 𝑖 ̸= 𝑗

Thus, we have

𝑝(𝐴,𝐵) =

⎛⎜⎜⎜⎝
𝑎11𝑏11 𝑎11𝑏12 . . . 𝑎11𝑏1𝑛
𝑎22𝑏21 𝑎22𝑏22 . . . 𝑎22𝑏2𝑛

...
...

. . .
...

𝑎𝑛𝑛𝑏𝑛1 𝑎𝑛𝑛𝑏𝑛2 . . . 𝑎𝑛𝑛𝑏𝑛𝑛

⎞⎟⎟⎟⎠−

⎛⎜⎜⎜⎝
𝑎11𝑏11 𝑎22𝑏12 . . . 𝑎𝑛𝑛𝑏1𝑛
𝑎11𝑏21 𝑎22𝑏22 . . . 𝑎𝑛𝑛𝑏2𝑛

...
...

. . .
...

𝑎11𝑏𝑛1 𝑎22𝑏𝑛2 . . . 𝑎𝑛𝑛𝑏𝑛𝑛

⎞⎟⎟⎟⎠

=

⎛⎜⎜⎜⎝
0 (𝑎11 − 𝑎22)𝑏12 . . . (𝑎11 − 𝑎𝑛𝑛)𝑏1𝑛

(𝑎22 − 𝑎11)𝑏21 0 . . . (𝑎22 − 𝑎𝑛𝑛)𝑏2𝑛
...

...
. . .

...
(𝑎𝑛𝑛 − 𝑎11)𝑏𝑛1 (𝑎𝑛𝑛 − 𝑎22)𝑏𝑛2 . . . 0

⎞⎟⎟⎟⎠.

Therefore, in general, we have (𝑝(𝐴,𝐵))𝑖𝑗 = (𝑎𝑖𝑖 − 𝑎𝑗𝑗)𝑏𝑖𝑗 . By our choice of
𝑏𝑖𝑗 , this implies that (𝑝(𝐴,𝐵))𝑖𝑗 = 𝑧𝑖𝑗 . Thus, we have that 𝑝(𝐴,𝐵) = 𝑍, and
consequently 𝑍 ∈ im𝑛(𝑝). Therefore, we have all zero-diagonal matrices in
im𝑛(𝑝).

Now, because we know that multilinear polynomials are similarity invariant,
we will show that attaining all zero-diagonal matrices is equivalent to attaining
all traceless matrices.

Lemma 3.5. If 𝑍 ∈ 𝑀0
𝑛(C), then there exists some invertible 𝑆 ∈ 𝑀𝑛(C) such

that 𝑆𝑍𝑆−1 is a zero-diagonal matrix.

9



Proof. Let 𝑍 ∈ 𝑀0
𝑛(C) be arbitrary. This proof proceeds by induction on 𝑛.

When 𝑛 = 1, then 𝑍 =
(︀
0
)︀
, which is clearly a zero-diagonal matrix. Thus,

assume the claim holds for 𝑛− 1, this is the induction hypothesis.
By the Schur Decomposition, there exists an invertible matrix 𝑆1 such that
𝑆1𝑍𝑆−1

1 is an upper-triangular matrix. Let 𝑇 = 𝑆1𝑍𝑆−1
1 , then

𝑇 =

⎛⎜⎜⎜⎝
𝑡11 𝑡12 . . . 𝑡1𝑛
0 𝑡22 . . . 𝑡2𝑛
...

...
. . .

...
0 0 . . . 𝑡𝑛𝑛

⎞⎟⎟⎟⎠
Because tr(𝑇 ) = tr(𝑍), we have tr(𝑇 ) = 0. Thus,

∑︀𝑛
𝑖 𝑡𝑖𝑖 = 0. If 𝑡𝑖𝑖 = 0 for all 𝑖,

we are done. Thus, assume 𝑡𝑖𝑖 ̸= 0 for some 𝑖, and therefore we must have that
𝑡𝑖𝑖 ≠ 𝑡𝑗𝑗 for some 𝑖, 𝑗. Without loss of generality, assume that 𝑡11 ̸= 𝑡22. So, let
𝑅 be the 2× 2 block matrix in the upper-left hand corner of 𝑇 , we have

𝑅 =

(︂
𝑡11 𝑡12
0 𝑡22

)︂
.

Because 𝑡11 ̸= 𝑡22, 𝑅 has distinct eigenvalues, and thus is diagonalizable. So,
there exists some invertible 𝑇1 ∈ 𝑀2(C), such that

𝑄 = 𝑇1𝑅𝑇−1
1 =

(︂
𝑞11 0
0 𝑞22

)︂
.

Now, consider the matrix

𝑇2 =

(︂
1 𝑡
−𝑡 1

)︂
,

which is invertible if 𝑡 ̸= ±𝑖. Then, we have

𝑇2𝑄𝑇−1
2 =

1

1 + 𝑡2

(︂
1 𝑡
−𝑡 1

)︂(︂
𝑞11 0
0 𝑞22

)︂(︂
1 −𝑡
𝑡 1

)︂
=

1

1 + 𝑡2

(︂
𝑞11 + 𝑞22𝑡

2 −𝑞11𝑡+ 𝑞22𝑡
−𝑞11𝑡+ 𝑞22𝑡 𝑞11𝑡

2 + 𝑞22

)︂
.

Because C is an algebraically closed field, there exists a solution to the equation
𝑞11 + 𝑞22𝑡

2 = 0. Let 𝑤 be a solution to this equation. Because 𝑞11 ̸= 𝑞22, we
have 𝑤 ̸= ±𝑖, and thus 𝑇2 is invertible. Therefore, we have

𝑇2𝑄𝑇−1
2 =

(︂
0 *
* *

)︂
.

Thus, we are able to force the entry in the upper left corner to be a zero. Finally,
we let

𝑆2 =

⎛⎜⎜⎜⎝
𝑇1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

⎞⎟⎟⎟⎠
10



and

𝑆3 =

⎛⎜⎜⎜⎝
𝑇2 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

⎞⎟⎟⎟⎠.

We then have that, by properties of multiplication of block matrices, that

𝑃 = 𝑆3𝑆2𝑆1𝑍𝑆−1
1 𝑆−1

2 𝑆−1
3 =

⎛⎜⎜⎜⎝
0 * . . . *
* * . . . *
...

...
. . .

...
* * . . . *

⎞⎟⎟⎟⎠.

Because trace is invariant under similarities, we have that tr(𝑃 ) = tr(𝑍) = 0.
Thus, the 𝑛− 1×𝑛− 1 block matrix in the lower-right corner of 𝑃 also has trace
0, to which we can apply the induction hypothesis. Therefore, every traceless
matrix 𝑍 is similar to a zero-diagonal matrix.

These lemmas allow us to prove Theorem 3.3.

Proof. Let 𝑍 ∈ 𝑀0
𝑛(C) be arbitrary. By Lemma 3.5, there exists some invertible

𝑆 ∈ 𝑀𝑛(C) such that 𝑆𝑍𝑆−1 is a zero-diagonal matrix. Then, by Lemma 3.4,
we have 𝑆𝑍𝑆−1 ∈ im𝑛(𝑝). Therefore, we have im𝑛(𝑝) = 𝑀0

𝑛(C).

This case allows us to prove that all bilinear polynomials satisfy the full
L’vov-Kaplansky Conjecture.

Theorem 3.6. If 𝑝 is a bilinear polynomial, then im𝑛(𝑝) is a subspace of 𝑀𝑛(C).

Proof. Suppose 𝑝 is a bilinear polynomial in the form

𝑝(𝑋,𝑌 ) = 𝑎𝑋𝑌 + 𝑏𝑌 𝑍

for some 𝑎, 𝑏 ∈ C.
First, in the case that 𝑎 = 𝑏 = 0, im𝑛(𝑝) = {0}.
Next, in the case that 𝑎 = 1 and 𝑏 = 0, we have 𝑝(𝑋,𝑌 ) = 𝑎𝑋𝑌 . So, for
all 𝐴 ∈ 𝑀𝑛(C), 𝑓( 1𝑎𝐴, 𝐼𝑛) = 𝐴. From this we get that the image is 𝑀𝑛(C).
Similarly, this works when 𝑏 = 1 and 𝑎 = 0.
Now, we assume that 𝑎, 𝑏 ̸= 0. Because 𝑝 is a homogeneous polynomial, we have

1

𝑎
𝑝(𝑋,𝑌 ) = 𝑝

(︂
1

𝑎
𝑋, 𝑌

)︂
and also

1

𝑎
𝑝(𝑋,𝑌 ) = 𝑋𝑌 +

𝑏

𝑎
𝑋𝑌.

Therefore, im𝑛(
1
𝑎𝑝) = im𝑛(𝑝), and so we can assume without loss of generality

that 𝑎 = 1. If 𝑏 ̸= −1, then 𝑝(𝐼𝑛, 𝑌 ) = (1 + 𝑏)𝑌 . Therefore, because 1 + 𝑏 ≠ 0,

11



for any 𝐴 ∈ 𝑀𝑛(C), we have 𝑝(𝐼𝑛,
1

1+𝑏𝐴) = 𝐴. Thus, im𝑛(𝑝) = 𝑀𝑛(C). Fi-
nally, if 𝑏 = −1, then 𝑝 is the commutator. By Theorem 3.3, we have that
im𝑛(𝑝) = 𝑀0

𝑛(C).
Therefore, we have shown that all bilinear polynomials have an image of
{0},𝑀0

𝑛(C), or 𝑀𝑛(C), all of which are subspaces of 𝑀𝑛(C).

The relative ease of the bilinear case leads to some confidence in approaching
multilinear polynomials in terms of their degree to attempt to answer the
conjecture. However, as we will see in the trilinear case, the number of the
coefficients of a multilinear polynomial is factorial. The strategy of using the
identity matrix to obtain useful information about the image of a multilinear
polynomial, while still pertinent, does not lead to answers in all cases.

4 Trilinear Examples

A trilinear polynomial is a multilinear polynomial of degree three. We can
express a trilinear polynomial 𝑝 as

𝑝(𝑋,𝑌, 𝑍) = 𝑎𝑋𝑌 𝑍 + 𝑏𝑋𝑍𝑌 + 𝑐𝑌 𝑋𝑍 + 𝑑𝑌 𝑍𝑋 + 𝑒𝑍𝑋𝑌 + 𝑓𝑍𝑌 𝑋,

with 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓 ∈ C. Determining the image of these polynomials is consider-
ably more difficult than the bilinear case, but we can deduce the image of many
trilinear polynomials.

Lemma 4.1. The image of 𝑝(𝑋,𝑌, 𝑍) = 𝑋𝑌 𝑍 is 𝑀𝑛(C).

Proof. Letting 𝑋 = 𝑌 = 𝐼𝑛, we have 𝑝(𝐼𝑛, 𝐼𝑛, 𝑍) = 𝐼𝑛𝐼𝑛𝑍 = 𝑍. Thus, for
any matrix 𝐴 ∈ 𝑀𝑛(C), we have that 𝑝(𝐼𝑛, 𝐼𝑛, 𝐴) = 𝐴. Thus, 𝐴 ∈ im𝑛(𝑝) as
desired.

Lemma 4.2. The image of 𝑝(𝑋,𝑌, 𝑍) = 𝑋𝑌 𝑍 − 𝑌 𝑍𝑋 is 𝑀0
𝑛(C).

Proof. Recall that trace is preserved under cyclic permutations. Thus, we
have that tr(𝑋𝑌 𝑍) = tr(𝑌 𝑍𝑋) for all choices of 𝑥, 𝑦, 𝑧. It follows that
tr(𝑝(𝑋,𝑌, 𝑍)) = 0 everywhere. We conclude that im(𝑝) ⊆ 𝑀0

𝑛(C). To show the
other direction, note that

𝑝(𝐼𝑛, 𝑌, 𝑍) = 𝑌 𝑍 − 𝑍𝑌.

We have previously shown that this attains all traceless matrices. Consequently,
im𝑛(𝑝) = 𝑀0

𝑛(C) , as desired.

The methods above show promise for determining the images of most poly-
nomials; plugging in the identity matrix for one or multiple variables often leads
to a polynomial of lower degree whose image is already known. In fact, it seems
that a large class of polynomials have an image of everything.

12



Theorem 4.3. Let 𝑝 be a multilinear polynomial of the form

𝑝(𝑋1, ..., 𝑋𝑑) =
∑︁
𝜎∈𝑆𝑑

𝛼𝜎 𝑋𝜎(1)𝑋𝜎(2) · · ·𝑋𝜎(𝑑).

If
∑︀

𝛼𝜎 ̸= 0, then the image of 𝑝 is 𝑀𝑛(C).

Proof. The above notation is in reference to the possible permutations of the set
of given variables. Note that

𝑝(𝑋1, 𝐼𝑛, . . . 𝐼𝑛) =
∑︁
𝜎∈𝑆𝑛

𝛼𝜎𝑋1 = 𝑐𝑋1

for some nonzero 𝑐 ∈ C. Thus, for any𝐴 ∈ 𝑀𝑛(C), we have that 𝑝(𝐴/𝑐, 𝐼𝑛, . . . 𝐼𝑛) =
𝐴. Thus, this implies that im𝑛(𝑝) = 𝑀𝑛(C).

It remains then to determine the images of polynomials in which the sum of
coefficients is 0. We can determine the images of some polynomials, as shown
below.

Lemma 4.4. The image of 𝑝(𝑋,𝑌, 𝑍) = 𝑋(𝑌 𝑍 − 𝑍𝑌 ) is 𝑀𝑛(C).

Proof. We know from the bilinear case that 𝑌 𝑍 − 𝑍𝑌 can attain every trace
zero matrix. Let 𝑌 𝑍 − 𝑍𝑌 = 𝐵 ∈ 𝑀0

𝑛(C) be invertible. Let 𝐴 ∈ 𝑀𝑛(C). Then,
if 𝑋 = 𝐴𝐵−1, then

𝑝(𝑋,𝑌, 𝑍) = 𝐴𝐵−1𝐵 = 𝐴,

showing the result.

The above result relies on factoring. For irreducible trilinear 𝑝, the problem
becomes more difficult. Consider 𝑝(𝑋,𝑌, 𝑍) = 𝑥𝑦𝑧 − 𝑧𝑦𝑥. Our current methods
did not allow us to fully determine the image of this polynomial. The full result
for all trilinear polynomials, however, was shown by Vitas [13]. We can still
obtain clues as to what the image may be.

Lemma 4.5. Let 𝑝(𝑋,𝑌, 𝑍) = 𝑋𝑌 𝑍 − 𝑍𝑌 𝑋. Then, im(𝑝) ⊇ 𝑀0
𝑛(C).

Proof. Let 𝑥 = 𝐼, and note that 𝑝(𝐼, 𝑌, 𝑍) = 𝑌 𝑍 − 𝑍𝑌 . The result immediately
follows.

While not a full result, showing containment of the traceless matrices can
tell us a lot about the full image of a polynomial. In fact, the above example
prompts an important question: does plugging in the identity matrix for one
variable always give us information about the image of a polynomial?
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4.1 More examples and computations

Consider a generic trilinear polynomial defined as before:

𝑝(𝑋,𝑌, 𝑍) = 𝑎𝑋𝑌 𝑍 + 𝑏𝑋𝑍𝑌 + 𝑐𝑌 𝑋𝑍 + 𝑑𝑌 𝑍𝑋 + 𝑒𝑍𝑋𝑌 + 𝑓𝑍𝑌 𝑋.

We assume that 𝑎 + 𝑏 + 𝑐 + 𝑑 + 𝑒 + 𝑓 = 0. Now, if 𝑝(𝐼𝑛, 𝑦, 𝑧) ̸= 0 (resp,
𝑝(𝑥, 𝐼𝑛, 𝑧) and 𝑝(𝑥, 𝑦, 𝐼𝑛)), then 𝑝(𝐼, 𝑦, 𝑧) = 𝛼𝑌 𝑍 − 𝛼𝑍𝑌 for some nonzero 𝛼.
Thus, 𝑀0

𝑛(C) ⊆ im𝑛(𝑝). It follows that a simplification is not possible if plugging
in the identity matrix for any variable always results in the zero polynomial. To
determine when exactly this happens, we solve a system of equations below.

𝑎+ 𝑏+ 𝑐+ 𝑑+ 𝑒+ 𝑓 = 0

𝑎+ 𝑏+ 𝑐 = 0

𝑑+ 𝑒+ 𝑓 = 0

𝑎+ 𝑏+ 𝑒 = 0

𝑐+ 𝑑+ 𝑓 = 0

𝑎+ 𝑐+ 𝑑 = 0

𝑏+ 𝑒+ 𝑓 = 0.

This results in the equalities

𝑎 = 𝑓

𝑏 = 𝑐

𝑐 = 𝑒 = −(𝑎+ 𝑏).

One example is

𝑝(𝑋,𝑌, 𝑍) = 𝑋𝑌 𝑍 +𝑋𝑍𝑌 − 2𝑌 𝑋𝑍 + 𝑌 𝑍𝑋 − 2𝑍𝑋𝑌 + 𝑍𝑌 𝑋.

Unfortunately, the existence of a counterexample indicates that there may not
be a straightforward way to show containment of the traceless matrices for larger
matrix sizes. In 2013, Mesyan was able to show this for trilinear polynomials [8].
While some results are known for small 𝑑, the question of containment remains
open in general. We attempted to apply our methods for the trilinear case to
degree 4. This process was difficult and computationally intensive. Moreover,
it gives evidence as to why the L’vov-Kaplansky Conjecture is much harder to
solve for polynomials of higher degree. We compute conditions for tetralinear
polynomials such that plugging in the identity for any variable always produces
the zero polynomial i.e

𝑝(𝐼𝑛, 𝑌, 𝑍,𝑊 ) = 𝑝(𝑋, 𝐼𝑛, 𝑍,𝑊 ) = 𝑝(𝑋,𝑌, 𝐼𝑛,𝑊 ) = 𝑝(𝑋,𝑌, 𝑍, 𝐼𝑛) = 0.

Remark 4.6. Let 𝑝 be a tetralinear polynomial of the form

𝑝(𝑋,𝑌, 𝑍,𝑊 ) = 𝑎(𝑋𝑌 𝑍𝑊 ) + 𝑏(𝑋𝑌𝑊𝑍) + · · ·+ 𝛼(𝑊𝑍𝑋𝑌 ) + 𝛽(𝑊𝑍𝑌𝑋).
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If 𝑝(𝐼𝑛, 𝑌, 𝑍,𝑊 ) = 𝑝(𝑋, 𝐼𝑛, 𝑍,𝑊 ) = 𝑝(𝑋,𝑌, 𝐼𝑛,𝑊 ) = 𝑝(𝑋,𝑌, 𝑍, 𝐼𝑛) = 0, then

𝑐+𝑚 = 𝑒+ 𝑠 = 𝑟 + 𝛽 = −(𝑢+ 𝑣) = −(𝑎+ 𝑏) = −(𝑜+ 𝑝)

𝑎+ 𝑔 = 𝑓 + 𝑡 = 𝑣 + 𝑙 = −(𝑖+ 𝑗) = −(𝛼+ 𝛽) = −(𝑐+ 𝑑)

𝑏+ ℎ = 𝑑+ 𝑛 = 𝑝+ 𝑗 = −(𝑘 + 𝑙) = −(𝑒+ 𝑓) = −(𝑞 + 𝑟)

𝑔 + ℎ = 𝑚+ 𝑛 = 𝑠+ 𝑡 = −(𝑢+ 𝑘) = −(𝑖+ 𝑜) = −(𝑞 + 𝛼).

We use the same method as for the trilinear case, but this time we look at
all combinations of three variables. This gives the following:

𝑎+ 𝑏+ 𝑐+𝑚 = 0 𝑎+ 𝑔 + 𝑖+ 𝑗 = 0

𝑑+ 𝑒+ 𝑓 + 𝑛 = 0 𝑏+ ℎ+ 𝑘 + 𝑙 = 0

𝑔 + ℎ+ 𝑖+ 𝑜 = 0 𝑐+𝑚+ 𝑜+ 𝑝 = 0

𝑗 + 𝑘 + 𝑙 + 𝑝 = 0 𝑑+ 𝑛+ 𝑞 + 𝑟 = 0

𝑠+ 𝑡+ 𝛼+ 𝑞 = 0 𝑒+ 𝑠+ 𝑢+ 𝑣 = 0

𝑢+ 𝑣 + 𝛽 + 𝑟 = 0 𝑓 + 𝑡+ 𝛼+ 𝛽 = 0

𝑎+ 𝑏+ 𝑒+ 𝑠 = 0 𝑎+ 𝑐+ 𝑑+ 𝑔 = 0

𝑐+ 𝑑+ 𝑓 + 𝑡 = 0 𝑏+ 𝑒+ 𝑓 + ℎ = 0

𝑔 + ℎ+ 𝑘 + 𝑢 = 0 𝑚+ 𝑛+ 𝑜+ 𝑖 = 0

𝑖+ 𝑗 + 𝑙 + 𝑣 = 0 𝑝+ 𝑞 + 𝑟 + 𝑗 = 0

𝑚+ 𝑛+ 𝑞 + 𝛼 = 0 𝑠+ 𝑡+ 𝑢+ 𝑘 = 0

𝑜+ 𝑝+ 𝑟 + 𝛽 = 0 𝑣 + 𝛼+ 𝛽 + 𝑙 = 0

Simplifying this system gives the final system shown above.
Increasing the degree of our polynomial increases the complexity of our

system of equations. The number of terms increase from 6 to 24, and will
increase factorially for larger degree. We do note, however, that the standard
polynomial 𝑠4, a known polynomial identity for 2× 2 matrices, does satisfy the
above system.

5 Examples on 2× 2 matrices

For a given multilinear polynomial 𝑝, we have that im𝑛(𝑝) depends not only on
the degree of 𝑝, but the size of the matrices, 𝑀𝑛(C), on which we evaluate it.
It was proven by Alexey Kanel-Belov, Sergey Malev, and Louis Rowen that the
L’vov-Kaplansky conjecture is true for all multilinear polynomials evaluated on
the 2 × 2 matrices [6]. That is, if 𝑝 is a multilinear polynomial, we have that
im2(𝑝) is one of the four possible subspaces: {0},C𝐼2,𝑀0

2 (C), or 𝑀2(C).
We provide examples to show that it possible to attain each of these subspaces.
It is simple to find a multilinear polynomial with all of 𝑀2(C) as its image, as a
trivial example take 𝑝(𝑋) = 𝑋.
As shown in the bilinear case, for all 𝑛, and thus more specifically 𝑛 = 2, we
have im𝑛(𝑋𝑌 − 𝑌 𝑋) = 𝑀0

𝑛(C).
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Definition 5.1. The Amitsur-Levitzki Theorem [1] states that the following
polynomial

𝑝(𝑋1, ..., 𝑋4) =
∑︁
𝜎∈𝑆4

sgn(𝜎)𝑋𝜎(1) · · ·𝑋𝜎(4)

is a polynomial identity for 𝑀2(C), called the standard polynomial on 2 × 2
matrices. This means that im2(𝑝) = {0}.

Lemma 5.2. The degree four multilinear polynomial

𝑝(𝑋1, 𝑋2, 𝑋3, 𝑋4) = [𝑋1, 𝑋2][𝑋3, 𝑋4] + [𝑋4, 𝑋3][𝑋2, 𝑋1]

is a central polynomial for 𝑀2(C), i.e., im2(𝑝) = C𝐼2.

Proof. First, we will show that for all𝑋1, 𝑋2, 𝑋3, 𝑋4 ∈ 𝑀2(C), we have 𝑝(𝑋1, 𝑋2, 𝑋3, 𝑋4) ∈
C𝐼2. From the bilinear case, we have that im2([𝑋,𝑌 ] = 𝑋𝑌 − 𝑌 𝑋 = 𝑀0

2 (C).
Thus, by the structure of traceless 2× 2 matrices, this means that

[𝑋1, 𝑋2] =

(︂
𝑎 𝑏
𝑐 −𝑎

)︂
and [𝑋3, 𝑋4] =

(︂
𝑑 𝑒
𝑓 −𝑑

)︂
for some 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓 ∈ C. Then, this means that

𝑝(𝑋1, 𝑋2, 𝑋3, 𝑋4) =

(︂
𝑎 𝑏
𝑐 −𝑎

)︂(︂
𝑑 𝑒
𝑓 −𝑑

)︂
+

(︂
𝑑 𝑒
𝑓 −𝑑

)︂(︂
𝑎 𝑏
𝑐 −𝑎

)︂
=

(︂
𝑎𝑑+ 𝑏𝑓 𝑎𝑒− 𝑏𝑑
𝑐𝑑− 𝑎𝑓 𝑐𝑒+ 𝑎𝑑

)︂
+

(︂
𝑎𝑑+ 𝑐𝑒 𝑏𝑑− 𝑎𝑒
𝑎𝑓 − 𝑐𝑑 𝑏𝑓 + 𝑎𝑑

)︂
=

(︂
2𝑎𝑑+ 𝑏𝑓 + 𝑐𝑒 0

0 2𝑎𝑑+ 𝑏𝑓 + 𝑐𝑒

)︂
.

Therefore, we have that 𝑝(𝑋1, 𝑋2, 𝑋3, 𝑋4) ∈ C𝐼2 for all 𝑋1, 𝑋2, 𝑋3, 𝑋4. Hence,
im2(𝑝) ⊆ C𝐼2.

Now, let 𝜆 ∈ C be arbitrary, we will show that

(︂
𝜆 0
0 𝜆

)︂
∈ im2(𝑝). We know

from the bilinear case that there exist some 𝑋1, 𝑋2, 𝑋3, 𝑋4 ∈ 𝑀2(C) such that

[𝑋1, 𝑋2] =

(︂
𝜆 0
0 −𝜆

)︂
and [𝑋3, 𝑋4] =

(︂
1
2 0
0 − 1

2

)︂
.

Then, we have that

𝑝(𝑋1, 𝑋2, 𝑋3, 𝑋4) =

(︂
𝜆 0
0 𝜆

)︂
.

Thus, from above, we have that im2(𝑝) = C𝐼2.

The proof of Kanel-Belov, Malev, and Rowen utilizes a ratio of eigenvalues,
and inspired by their methods, we will introduce a mapping which takes a
matrix to its determinant and trace squared. Using this mapping, we will give a
condition which determines when the image of a multilinear polynomial is dense
in the 2× 2 matrices.
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6 Density Approcaches to the L’vov-Kaplansky
Conjecture

We introduce mappings and parameterizations to explore the image of a multi-
linear polynomial 𝑝 on 𝑀2(C).

Definition 6.1. Define Φ : 𝑀2(C) → C2 by Φ(𝐴) = (det(𝐴), tr2(𝐴)).

This allows us to move from 𝑀2(C) to C2. In fact, if Φ can attain a dense
space in C2, then 𝑝 is dense in 𝑀2(C). Thus, determining information about how
Φ behaves in C2 can give us information of how 𝑝 behaves in 𝑀2(C). Consider
the following proposition, courtesy of Špela Špenko.

Proposition 6.2. (From [12]) The image of a polynomial 𝑝 is dense in 𝑀2(C)
if and only if det(𝑝), tr(𝑝) are algebraically independent.

Špenko’s proof relies uses tr(𝑝2) instead of det(𝑝), but the proposition still
holds true in our case. Now, we introduce a parameterization, defined as follows:

Definition 6.3. Let 𝑋,𝑌 ∈ 𝑀2(C)𝑑. Define a parametric equation 𝛾(𝑧) : C →
𝑀2(C)𝑑 as

𝛾(𝑧) = 𝑋 + 𝑧(𝑌 −𝑋).

Now, we can combine our parameterization with our mapping in order to gain
insight in im2(𝑝) for multlinear 𝑝. We additionally introduce a scaling parameter
𝑤.

Definition 6.4. Let 𝑔(𝑤, 𝑧) = Φ(𝑝(𝑤 · 𝛾(𝑧))).

This prompts the following question.

Question 6.5. Suppose 𝑝(𝑋1, . . . , 𝑋𝑑) is a multilinear polynomial. Assume
that there exist 𝑋,𝑌 ∈ 𝑀2(C)𝑑 such that Φ(𝑝(𝑋)) and Φ(𝑝(𝑌 )) are linearly
independent. Is {𝑔(𝑤, 𝑧) : 𝑤, 𝑧 ∈ C} dense in C2?

Here, note that for multilinear 𝑝, 𝑝(𝑤𝑥1, . . . , 𝑤𝑥𝑑) = 𝑤𝑑𝑝(𝑥1, . . . , 𝑥𝑑). An-
swering this question will involve properties of the Jacobian matrix, defined as
follows:

Definition 6.6. Suppose 𝑓 : C𝑚 → C𝑛 is differentiable at 𝑥0. The Jacobian
Matrix of 𝑓 is the 𝑛×𝑚 matrix of functions denoted by

𝐽𝑓 (𝑥0) :=

(︂
𝜕𝑓𝑖
𝜕𝑥𝑗

(𝑥0)

)︂𝑚,𝑛

𝑖,𝑗=1

.

Note that 𝐷𝑓(𝑥0)[ℎ] = 𝐽𝑓 (𝑥0)ℎ, where the product on the right hand side is
matrix multiplication against a column vector. An 𝑛×𝑚 matrix is a linear map
from C𝑚 to C𝑛 when using multiplication on the right by column vectors. Since
𝑓 : C𝑚 → C𝑛, its derivative at a point should have the same action, which is
how we’ve built our Jacobian matrix.
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Recall that 𝑔(𝑤, 𝑧) is a polynomial map from C2 to C2. Thus, its partial
derivatives are polynomials as well (the Jacobian matrix is a 2 × 2 matrix of
polynomials in 𝑤 and 𝑧), and consequently the determinant of the Jacobian
matrix is a commutative polynomial in 𝑤 and 𝑧.

So, does the linear independence of the points 𝑋, 𝑌 help us show the
derivative is invertible?

Let 𝑝 be a multilinear polynomial. Assume Φ(𝑝(𝑋)) and Φ(𝑝(𝑌 )) are not
colinear. Note that the homogeneity of 𝑝 implies that 𝑔 is homogeneous in 𝑤. If
𝑝(𝑤𝐴) = 𝑤𝑑𝑝(𝐴), then

𝑔(𝑧, 𝑤) = 𝑤2𝑑𝑔(𝑧, 1) = 𝑤2𝑑Φ(𝑝(𝛾(𝑧))).

Here 𝑑 is the homogeneity degree of 𝑝, while 2 comes from the 2× 2 matrix case.
Observe that

𝜕𝑔

𝜕𝑤
= 𝑑𝑤𝑑−1𝑔(𝑧, 1).

Also note that 𝜕𝑔
𝜕𝑧 (𝑧0, 1) and

𝜕𝑔
𝜕𝑤 (𝑧0, 1) are parallel vectors if and only if 𝜕𝑔

𝜕𝑧 (𝑧0, 1) =
𝜅(𝑧0)𝑔(𝑧0, 1) for some polynomial 𝜅. That is, 𝐽𝑔 is invertible at a point if and
only if the 𝑧 partial derivative is not equal to the function value at some point.

Question 6.7. Let 𝑞 be a polynomial. If 𝑞′(𝑧0) = 𝜅(𝑧0)𝑞(𝑧0) for all 𝑧0 ∈ C, then
is 𝑞 effectively linear?

An example: 𝑞1(𝑧) = (𝑧2, 4𝑧2). This is not linear in 𝑧, but its image is a
1-dimensional subspace of C2.

Lemma 6.8. Suppose 𝑞 : C𝑛 → C𝑛 is a polynomial mapping. If there exists
a point 𝑥0 ∈ C𝑛 such that 𝐷𝑞(𝑥0) is invertible, then im(𝑞) is a Zariski-dense
subset of C𝑛.

Proof. Let 𝑞 = (𝑞1, . . . , 𝑞𝑛), where each 𝑞𝑖 ∈ C[𝑥1, . . . , 𝑥𝑛]. Suppose 𝐷𝑞(𝑥0) is
invertible. Next, assume by way of contradiction that the image of 𝑞 is not
Zariski dense. It follows that there exists a nonzero polynomial 𝑟 such that
𝑟(𝑞1(𝑥), . . . , 𝑞𝑛(𝑥)) = 0.

The Inverse Function Theorem says that there exists a neighborhood about
𝑥0 on which 𝑞 is invertible and its local inverse is differentiable. Thus, 𝑞 is an
open mapping near 𝑥0, so that it sends the open neighborhood about 𝑥0 to an
open set. Namely, the image of 𝑞 contains an open neighborhood about 𝑝(𝑥0).
It follows that 𝑟 must vanish on this open neighborhood, implying that 𝑟 is the
zero polynomial, a contradiction. Therefore, the image of 𝑞 is Zariski dense in
C𝑛.

Remark 6.9. An example of a Zariski-dense set is the domain of the rational
mapping

(𝑧, 𝑤) ↦→ (𝑧−1(1− 𝑧𝑤)−1, (1 + 2𝑧 + 𝑤 + 𝑤2 − 𝑧2)−2).

This rational function is defined at any point (𝑧, 𝑤) ∈ C2 except for the points
that make either 𝑧, 1− 𝑧𝑤, or 1 + 2𝑧 + 𝑤 + 𝑤2 − 𝑧2 equal to zero.
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det

tr2

Φ(𝑝(𝑤 · 𝛾(𝑧)))

𝑂

Φ(𝑝(𝑋))

Φ(𝑝(𝑌 ))

Figure 1: A depiction of our mapping into C2. Observe that scaling our polyno-
mial allows us to ‘fill in’ our space.

Theorem 6.10. Let 𝑝 be a multilinear polynomial of degree 𝑑.
If there exist points 𝑋,𝑌 ∈ 𝑀2(C)𝑑 such that Φ(𝑝(𝑋)) and Φ(𝑝(𝑌 )) are not

linearly dependent, then im2(𝑝) is a Euclidean-dense subset of 𝑀2(C).

Proof. Suppose there exist 𝑋,𝑌 ∈ 𝑀2(C)𝑑 such that that Φ(𝑝(𝑋)) and Φ(𝑝(𝑌 ))
are linearly independent vectors in C2.
Define 𝛾(𝑧) and 𝑔(𝑧, 𝑤) as before and let 𝑓(𝑧) = (Φ ∘ 𝑝 ∘ 𝛾)(𝑧). We note that
𝑓(𝑧) = (𝑓1(𝑧), 𝑓2(𝑧)) for some polynomials 𝑓1 and 𝑓2. Now, we consider the
Jacobian matrix of 𝑔 at (𝑧, 1). We have

𝐽𝑔(𝑧, 1) =

(︂
𝑓 ′
1(𝑧) 𝑓 ′

2(𝑧)
𝑑𝑓1(𝑧) 𝑑𝑓2(𝑧)

)︂
.

Suppose there exists some 𝑧0 ∈ C such that 𝐽𝑔(𝑧0, 1) is invertible. So, 𝑔 is a
polynomial mapping from C2 to C2 such that 𝐷𝑔(𝑧0) is invertible. This implies,
by Lemma 6.8 that im(𝑔) is a Zariski-dense subset of C2.
Now, observe that for all (𝑧, 𝑤) ∈ C2, we have that 𝑔(𝑧, 𝑤) = Φ(𝑝(𝑤 · 𝛾(𝑧))).
Thus, 𝑔(𝑧, 𝑤) ∈ im(Φ ∘ 𝑝), and hence im(𝑔) ⊆ im(Φ ∘ 𝑝). Therefore, because the
image of 𝑔 is a dense subset of C2, we must have that the image of Φ ∘ 𝑝 is a
dense subset of C2.
By Proposition 5.2 in [12], the density of Φ ∘ 𝑝, and thus density of the trace
and determinant, implies that im2(𝑝) is a dense subset of 𝑀2(C). Therefore, if
𝐽𝑔(𝑧0, 1) is invertible for any 𝑧0 ∈ C, we have that the image of 𝑝 is a dense
subset of 𝑀2(C).
We now consider the case when 𝐽𝑔(𝑧, 1) is not invertible for all 𝑧 ∈ C. This

19



means that for all 𝑧 ∈ C, we have det(𝐽𝑔(𝑧, 1)) = 0. Therefore, by the equation
for the determinant of a 2× 2 matrix, we have

𝑑(𝑓 ′
1(𝑧)𝑓2(𝑧)− 𝑓1(𝑧)𝑓

′
2(𝑧)) = 0. (1)

If 𝑓1(𝑧) = 𝑓2(𝑧) = 0 for all 𝑧 ∈ C, then this would contradict our assumption
that 𝑓(0) = Φ(𝑝(𝑋)) and 𝑓(1) = Φ(𝑝(𝑌 )) are linearly independent.
So, assume that 𝑓1(𝑧) ̸≡ 0, using (1), we have

𝑑

𝑑𝑧

(︂
𝑓2(𝑧)

𝑓1(𝑧)

)︂
=

𝑓 ′
1(𝑧)𝑓2(𝑧)− 𝑓1(𝑧)𝑓

′
2(𝑧)

(𝑓1(𝑧))2
= 0.

This implies that the ratio between 𝑓2(𝑧) and 𝑓1(𝑧) is constant, and thus
𝑓1(𝑧) = 𝑐𝑓2(𝑧) for some 𝑐 ∈ C. Therefore, we have that im(𝑓) is contained in a
proper subspace of C2. This contradicts our assumption that 𝑓(0) and 𝑓(1) are
linearly independent.
Hence, given that Φ(𝑝(𝑋)) and Φ(𝑝(𝑌 )) are linearly independent, we must have
that im2(𝑝) is a dense subset of 𝑀2(C).

The image of our mapping in C2 can either be a dense subset of the full space
or a dense subset of a line through the origin. We know from established results
that the only possibilities that this line can be are (𝑧, 4𝑧) (the scalar matrices)
or (𝑧, 0) (the traceless matrices). However, our proof does not rule out other
possibilities.

Question 6.11. Can we rule out any other subspaces as the images of Φ ∘ 𝑝?

6.1 Generalizing to Larger Matrix Sizes

One main motivation for pursuing the density approach was the hope of general-
izing our 2× 2 approach to larger matrix sizes.

Definition 6.12. A cone is a set that is closed under scalar multiplication.

Example 6.13. The subspace {(𝑧, 4𝑧) : 𝑧 ∈ C} is a cone in C2.

Remark 6.14. The 2× 2 argument uses the fact that any one dimensional cone
must be a line or a set of lines through the origin. Our proof shows that the
image of Φ cannot be set of lines; the image is either the full space or a line
through the origin (up to density). Since a line through the origin is a subspace,
the image of Φ must be a subspace in the 2× 2 case. However, when generalizing
to 𝑛 × 𝑛 matrices, we can no longer guarantee that an (𝑛 − 1)-dimensional
subset is a subspace. We present our work for the 3× 3 case as an example. We
introduce similar mappings, defined as follows.

Definition 6.15. Define Φ3 : 𝑀3(C) → C3 by Φ(𝐴) = (det2(𝐴), tr6(𝐴), tr3(𝐴2)).

Now, we introduce a parameterization, defined as follows:
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Definition 6.16. Let 𝑋,𝑌 ∈ 𝑀3(C)𝑑. Define a parametric equation 𝛾3(𝑧1, 𝑧2) :
C2 → 𝑀3(C)𝑑 as

𝛾(𝑧1, 𝑧2) = 𝑋 + 𝑧1(𝑌 −𝑋) + 𝑧2(𝑍 −𝑋).

Definition 6.17. Let 𝑔3(𝑤, 𝑧1, 𝑧2) = Φ(𝑝(𝑤 · 𝛾3(𝑧1, 𝑧2))).

Our attempted proof follows closely to the 2 × 2 case, but fails when we
assume noninvertibility everywhere.

Question 6.18. Let 𝑔 : C2 → C3 be a polynomial. If for all 𝑧0 ∈ C2, 𝑝(𝑧0) ∈
span{ 𝜕𝑔

𝜕𝑥𝑖
}, then is 𝑔 is contained in a 2-dimensional subspace?

Say 𝑔 has two input variables 𝑧1, 𝑧2, and output

𝑔(𝑧1, 𝑧2) = ⟨𝑔1(𝑧1, 𝑧2), 𝑔2(𝑧1, 𝑧2), 𝑔3(𝑧1, 𝑧2)⟩

Consider the following matrix 𝐽𝑔3 , defined as follows:

𝐽𝑔3 =

⎛⎝𝜕𝑔1
𝜕𝑧1

𝜕𝑔2
𝜕𝑧1

𝜕𝑔3
𝜕𝑧1

𝜕𝑔1
𝜕𝑧2

𝜕𝑔2
𝜕𝑧2

𝜕𝑔3
𝜕𝑧2

𝑔1 𝑔2 𝑔3

⎞⎠ .

If the hypothesis is true, then 𝐽𝑔3 is noninvertible and thus det(𝐽𝑔3) = 0.
Computing directly, it can be shown that

𝑔1(
𝜕𝑝2
𝜕𝑥1

𝜕𝑔3
𝜕𝑥2

− 𝜕𝑔2
𝜕𝑥2

𝜕𝑔3
𝜕𝑥1

) + 𝑔2(
𝜕𝑔1
𝜕𝑥2

𝜕𝑔3
𝜕𝑥1

− 𝜕𝑔1
𝜕𝑥1

𝜕𝑔3
𝜕𝑥2

)

+ 𝑔3(
𝜕𝑔1
𝜕𝑥1

𝜕𝑔2
𝜕𝑥2

− 𝜕𝑔2
𝜕𝑥1

𝜕𝑝1
𝜕𝑔2

) = 0

𝑔3 =
𝑔1(

𝜕𝑔2
𝜕𝑥1

𝜕𝑔3
𝜕𝑥2

− 𝜕𝑔2
𝜕𝑥2

𝜕𝑔3
𝜕𝑥1

) + 𝑔2(
𝜕𝑔1
𝜕𝑥2

𝜕𝑔3
𝜕𝑥1

− 𝜕𝑔1
𝜕𝑥1

𝜕𝑔3
𝜕𝑥2

)
𝜕𝑔2
𝜕𝑥1

𝜕𝑔1
𝜕𝑥2

− 𝜕𝑔1
𝜕𝑥1

𝜕𝑔2
𝜕𝑥2

Rearranging gives us a formula for 𝑝3 in terms of 𝑝1 and 𝑝2. However, this is
not enough information to guarantee a subspace.

Remark 6.19. We only know that im3(𝑝) is a two-dimensional cone in C3.
While we hoped to show that this necessarily is a subspace, our methods failed to
exclude potential counterexamples, such as the standard geometric interpretation
of a cone.

Example 6.20. Consider 𝑓(𝑧1, 𝑧2) = (𝑧21 , 𝑧
2
2 , 𝑧1𝑧2). The image of 𝑓 is not a

plane in C2 but does satisfy the definition of a cone.

Remark 6.21. For a general 𝑛, our Φ𝑛 is written in terms of

det(𝐴), tr(𝐴), ..., tr(𝐴𝑛−1)

in accordance with Špela Špenko’s result. As in Φ3, additional exponents are
added to ensure that scaling is consistent across each term.

Question 6.22. Can we modify our 2 × 2 proof to eliminate non-subspace
counter examples?
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7 Factoring Multilinear Polynomials

Seeking to reduce the complexity of our multilinear polynomials in any way pos-
sible, we turn our attention to factoring multilinear polynomials. If a multilinear
polynomial 𝑝 is reducible, does this tell us anything about its image? Our goal
is to determine if there are additional conditions that we can impose on a multi-
linear polynomial in order to verify that it satisfies the Density Dimension-Free
L’vov-Kaplansky Conjecture. One important result that we proved was that
multilinearity is preserved by factoring.

Definition 7.1. Let 𝑤 be a term in 𝑝 with a nonzero coefficient. Define
𝑑𝑥𝑖

(𝑝) := max{deg𝑥𝑖
(𝑤) : 𝑤 ∈ 𝑝}. If 𝑝 = 0, we say 𝑑𝑥𝑖

= −∞.

We note that for multilinear polynomials 𝑝1, 𝑝2,

𝑑𝑥𝑖
(𝑝1𝑝2) = 𝑑𝑥𝑖

(𝑝1) + 𝑑𝑥𝑖
(𝑝2).

Furthermore,
𝑑𝑥𝑖

(𝑝1 + 𝑝2) ≤ max{𝑑𝑥𝑖
(𝑝1), 𝑑𝑥𝑖

(𝑝2)}.

Theorem 7.2. If 𝑝 is a multilinear polynomial and it factors as 𝑝 = 𝑝1𝑝2...𝑝𝑘
such that none of the 𝑝𝑖 is a constant polynomial, then each 𝑝𝑖 is multilinear.

Proof. Without loss of generality, suppose 𝑝 = 𝑝1𝑝2. Let 𝑝1 = 𝑝(𝑋1, ..., 𝑋𝑚)
and 𝑝2 = 𝑝(𝑌1, ..., 𝑌𝑛). We cannot assume that 𝑝1 and 𝑝2 are multilinear, so we
consider each noncommutative polynomial to be the sum of words or monomials.

For every variable 𝑋𝑘 in 𝑝1 (resp. 𝑝2), 𝑑𝑋𝑘
(𝑝1) ≥ 1 Suppose by way of

contradiction that 𝑝1, 𝑝2 share a common variable 𝑋𝑗 . Then, 𝑑𝑋𝑗
(𝑝) ≥ 2 since

𝑑𝑋𝑗
(𝑝1) + 𝑑𝑋𝑗

(𝑝2) = 𝑑𝑥𝑗
(𝑝)

by the properties of our 𝑋𝑗-degree valuation. However, we know that 𝑑𝑋𝑖
= 1.

for every variable 𝑋𝑖 in 𝑝 since 𝑝 is multilinear. Thus 𝑝1 and 𝑝2 are polynomials
in distinct variables.

Now, without loss of generality we will show that 𝑝1 is multilinear; it suffices
to show that 𝑝1 is linear in 𝑥1. By the multilinearity of 𝑝, we have that

𝑝(𝑋1 + 𝑐𝑍, ...,𝑋𝑚, 𝑌1, ..., 𝑌𝑛) = 𝑝(𝑋1, ..., 𝑋𝑚, 𝑌1, ..., 𝑌𝑛) + 𝑐𝑝(𝑍, ...,𝑋𝑚, 𝑌1, ..., 𝑌𝑛)

= 𝑝1(𝑋1, ..., 𝑋𝑚)𝑝2(𝑌1, ..., 𝑌𝑛) + 𝑐𝑝1(𝑍, ...,𝑋𝑚)𝑝2(𝑌1, ..., 𝑌𝑛)

= (𝑝1(𝑋1, ..., 𝑋𝑚) + 𝑐𝑝1(𝑍, ...,𝑋𝑚))𝑝2(𝑌1, ..., 𝑌𝑛)

Because we also know that

𝑝(𝑋1 + 𝑐𝑍, ...,𝑋𝑚, 𝑌1, ..., 𝑌𝑛) = 𝑝1(𝑋1 + 𝑐𝑍, ...,𝑋𝑚)𝑝2(𝑌1, ..., 𝑌𝑛),

this implies that

𝑝1(𝑋1+𝑐𝑍, ...,𝑋𝑚)𝑝2(𝑌1, ..., 𝑌𝑛) = (𝑝1(𝑋1, ..., 𝑋𝑚)+𝑐𝑝1(𝑋, ...,𝑋𝑚))𝑝2(𝑌1, ..., 𝑌𝑛).
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Consequently,(︀
𝑝1(𝑋1 + 𝑐𝑍, ...,𝑋𝑚)− (𝑝1(𝑋1, ..., 𝑋𝑚) + 𝑐𝑝1(𝑍, ...,𝑋𝑚))

)︀
𝑝2(𝑌1, ..., 𝑌𝑛) = 0.

However, 𝑝2 is nonzero, and C⟨𝑋,𝑌 ⟩ is a domain [3], thus 𝑝1 is multilinear, and
similarly 𝑝2 is multilinear.
Hence, we have shown that if 𝑝 = 𝑝1𝑝2 for some nonconstant polynomials 𝑝1, 𝑝2,
then 𝑝1 and 𝑝2 are multilinear in distinct variables.

This result is significant in that it allows us to more efficiently study multilin-
ear polynomials of higher degree by factoring them into multilinear polynomials
of smaller degree, for which we may already have results. Inspired by this result,
we prove several related results about the factorization of polynomials. To do so,
we utilize two results from Špela Špenko, which we have termed the “Density
Domino Effect”. These are Lemma 5.3 in [12]. This first result states that if
we have density in the traceless matrices for one matrix size, this density in the
traceless matrices persists for all larger matrix sizes.

Lemma 7.3. If 𝑝 is a multilinear polynomial, and im𝑛−1(𝑝)∩𝑀0
𝑛−1(C) is dense

in 𝑀0
𝑛−1(C), then im𝑛(𝑝) ∩𝑀0

𝑛(C) is dense in 𝑀0
𝑛(C).

This implies that all multilinear polynomials that are not central polynomials
or polynomial identities for 2× 2 matrices must attain density in the traceless
matrices, 𝑀0

𝑛(C), for all 𝑛 ≥ 2. Additionally, we have

Remark 7.4. If 𝑝 is a multilinear polynomial, im𝑛(𝑝) ∩ 𝑀0
𝑛(C) is dense in

𝑀0
𝑛(C), and im𝑛(𝑝) ⊈ 𝑀0

𝑛(C), then im𝑛(𝑝) is dense in 𝑀𝑛(C).

Thus, if a multilinear polynomial with density in the traceless matrices attains
even one other matrix with trace nonzero, then the image is dense in the full
matrix algebra. The following is a consequence of the two previous results and
the fact that once a multilinear polynomial attains one trace non-zero matrix,
this persists for larger matrix sizes. Thus,

Corollary 7.5. If 𝑝 is a multilinear polynomial and im𝑛−1(𝑝) is dense in
𝑀𝑛−1(C), then im𝑛(𝑝) is dense in 𝑀𝑛(C).

Before continuing the discussion, we introduce a well-known Lemma, e.g. [9]:

Lemma 7.6. If 𝑝 ∈ C⟨𝑥1, . . . , 𝑥𝑑⟩ then either there exists 𝑛 ∈ N and a matrix
tuple 𝑋 = (𝑋1, . . . , 𝑋𝑑) so that 𝑝(𝑋) is invertible, or 𝑝 is the zero polynomial.

Proof. Suppose 𝑝 is not the zero polynomial. Posner’s Theorem implies that the
𝑛× 𝑛 generic matrix algebra is contained in a skew field, UD𝑛. In particular, an
evaluation of our polynomial on generic matrices is an element of UD𝑛. Hence,
each evaluation is either zero, or it is invertible within UD𝑛.

In the former setting, it follows that the polynomial 𝑝 also evaluates to zero
identically on 𝑛× 𝑛 matrices, hence, by our assumption that 𝑝 is not the zero
polynomial there must be some matrix size 𝑛 sufficiently large so that 𝑝 evaluates
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to an invertible element of UD𝑛. As a nonzero element of UD𝑛, the determinant
of the evaluation is an invertible element of some rational field over C (rational
over commutative indeterminants that are the entries of the generic matrices). It
follows that there exists some evaluation of this (commutative) rational function
that is nonzero. Since the indeterminants of the rational function are the entries
of the generic matrices, we conclude that there exist matrices 𝑋 = (𝑋1, . . . , 𝑋𝑑)
so that 𝑝(𝑋) is invertible.

In terms of the Density Dimension-Free L’vov-Kaplansky Conjecture, showing
that multilinear polynomials attain density in the traceless matrices for a given
size is equivalent to proving the conjecture. We will now detail two results that
we proved about factoring polynomials using the “Density Domino Effect.” In
our proof, we will use the Frobenius matrix norm.

Theorem 7.7. Let 𝑝 be a multilinear polynomial that factors;

𝑝 = 𝑝1 . . . 𝑝𝑘.

If there exists an 𝑖, 𝑛 such that im𝑛(𝑝𝑖) is dense in 𝑀𝑛(C), then im𝑚(𝑝) is dense
in 𝑀𝑚(C) for some 𝑚 ≥ 𝑛.

Proof. It suffices to check the case where 𝑝 = 𝑝1𝑝2𝑝3 and 𝑝2 is dense in 𝑀𝑛(C).
Let 𝜀 > 0. We know that 𝑝1, 𝑝3 are not polynomial identities over 𝑀𝑚(C) for
some 𝑚 by the Amitsur-Levitzki theorem [1]; assume 𝑚 > 𝑛. We then know
that im𝑚(𝑝1), im𝑚(𝑝3) must each attain an invertible matrix in their image by
Lemma 7.6. Let 𝐴1, 𝐴3 be invertible matrices in im𝑚(𝑝1), im𝑚(𝑝3), respectively.
Suppose 𝑋 ∈ 𝑀𝑚(C). Then, by Remark 7.5, there exists a 𝐵 ∈ im𝑚(𝑝2)
such that ||𝐵 − 𝑋|| < 𝜀/2. Additionally, we know that there exists a matrix
𝑌 ∈ im𝑚(𝑝2) such that ||𝑌 −𝐴−1

1 𝐵𝐴−1
3 || < 𝜀, where

𝜀 <
𝜀

2(||𝐴1||)(||𝐴3||)
.

We have that ‖𝐴1‖, ‖𝐴3‖ > 0 because 𝐴1, 𝐴3 are invertible. Denote 𝐷 =
𝑌 −𝐴−1

1 𝐵𝐴−1
3 . Thus, the image of 𝑝 contains

𝐴1(𝐴
−1
1 𝐵𝐴−1

3 +𝐷)𝐴3 = 𝐵 +𝐴1𝐷𝐴3.

Now, we know that ||𝐵 −𝑋|| < 𝜀/2 and ||𝐴1𝐷𝐴3|| < 𝜀/2. Thus, by the triangle
inequality, we have that

||𝐵 +𝐴1𝐷𝐴3 −𝑋|| < 𝜀.

We conclude that the image of 𝑝 is dense in 𝑀𝑚(C) for some 𝑚, as desired.

This result is useful because if a multilinear polynomial is reducible, then
we only need to know that one of its factors attains density in the full matrix
algebra. However, what can we say when none of the factors attain density in
the full space? Our next result implies that density in the traceless matrices of
two adjacent factors would allow us to appeal to Theorem 7.7.
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Theorem 7.8. If 𝑝1 and 𝑝2 are two polynomials such that im𝑛 𝑝1 ∩𝑀0
𝑛(C) and

im𝑛 𝑝2 ∩𝑀0
𝑛(C) are dense in 𝑀0

𝑛(C), then im𝑛 𝑝1𝑝2 is dense in 𝑀𝑛(C).

Proof. Let 𝐴 ∈ 𝑀𝑛(C) and 𝜀 > 0 be arbitrary. We will show there exists some
𝑍 ∈ im𝑛(𝑝1𝑝2) such that ‖𝑍 −𝐴‖ < 𝜀.
Because 𝑝1 and 𝑝2 are multilinear, using the permutation notation, it is clear
that 0 ∈ im𝑛(𝑝1), im𝑛(𝑝2). Thus, 0 ∈ im𝑛(𝑝1𝑝2). Therefore, we can assume that
𝐴 is not the zero matrix. By de Saguin-Pazzis [10] Theorem 3 and Proposition 12,
there exist some trace zero matrices 𝐵,𝐶 ∈ 𝑀0

𝑛(C) such that 𝐴 = 𝐵𝐶. Because
𝐴 is not the zero matrix, neither 𝐵 nor 𝐶 can be the zero matrix. Therefore,
‖𝐵‖, ‖𝐶‖ > 0. Let 𝑀 = max{‖𝐵‖, ‖𝐶‖, 1}.
Now, let 𝜀′ = min{𝜀, 1}. Because the image of 𝑝1 is dense in 𝑀0

𝑛(C), there
exists some 𝑋 ∈ im𝑛(𝑝1) such that ‖𝑋 −𝐵‖ < 𝜀′

3𝑀 . Similarly, there exists some

𝑌 ∈ im𝑛(𝑝2) such that ‖𝑌 − 𝐶‖ < 𝜀′

3𝑀 . We have 𝑋𝑌 ∈ im𝑛(𝑝1𝑝2), and observe
that using the triangle inequality and sub-multiplicativity of the matrix norm
we have

‖𝑋𝑌 −𝐴‖ = ‖𝑋𝑌 −𝐵𝐶‖
= ‖(𝐵 + (𝑋 −𝐵))(𝐶 + (𝑌 − 𝐶))−𝐵𝐶‖
= ‖𝐵(𝑌 − 𝐶) + (𝑋 −𝐵)𝐶 + (𝑋 −𝐵)(𝑌 − 𝐶)‖
≤ ‖𝐵‖‖𝑌 − 𝐶‖+ ‖𝐶‖‖𝑋 −𝐵‖+ ‖𝑋 −𝐵‖‖𝑌 − 𝐶‖

< ‖𝐵‖ 𝜀′

3𝑀
+ ‖𝐶‖ 𝜀′

3𝑀
+

(𝜀′)2

9𝑀2
.

Because 𝑀 ≥ ‖𝐵‖, ‖𝐶‖, we have ‖𝐵‖ 𝜀′

3𝑀 ≤ 𝜀′

3 and ‖𝐶‖ 𝜀′

3𝑀 ≤ 𝜀′

3 . Also, because
𝜀′ ≤ 1, we have (𝜀′)2 ≤ 𝜀′. Additionally, because 𝑀 ≥ 1, we have 𝑀2 ≥ 1,

thus 9𝑀2 ≥ 3. Hence, we have (𝜀′)2

9𝑀2 ≤ 𝜀′

3 . Therefore, this implies, using the
inequality from above, that

‖𝑋𝑌 −𝐴‖ <
𝜀′

3
+

𝜀′

3
+

𝜀′

3
= 𝜀.

Finally, since 𝜀′ ≤ 𝜀, this means that ‖𝑋𝑌 −𝐴‖ < 𝜀.
Therefore, for an arbitrary 𝜀 > 0 and 𝐴 ∈ 𝑀𝑛(C), there exists some 𝑍 =
𝑋𝑌 ∈ im𝑛(𝑝1𝑝2) such that ‖𝑍 −𝐴‖ < 𝜀. Hence, the image of 𝑝1𝑝2 is dense in
𝑀𝑛(C).

Therefore, we have shown that reducibility of a multilinear polynomial can
be extremely useful in determining its image on 𝑀𝑛(C). However, it remains
open what can be said about irreducible polynomials.

8 Future Directions

There are several directions to take following the density approach. Generally, if
we can show that every nonzero multilinear polynomial eventually has density
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in 𝑀0
𝑛(C), then only irreducible polynomials can fail to attain density in 𝑀𝑛(C).

To do this we would need to investigate if irreducible polynomials have a specific
form. Additionally, by looking at images of standard polynomials, central
polynomials, and polynomial identities, we could gain further insight to reducible
and irreducible polynomials forms. Looking at these polynomials could answer
the question of what operations on a multilinear polynomial preserve density in
𝑀0

𝑛(C). Another open question is at what dimension does the “density domino
effect” from [12] start for a given multilinear polynomial? Also, we still hope to
find a density proof that generalizes, since the proof we provided for the 2× 2
case in Section 6 revealed itself not to be. If we know what dimension 𝑘 the
domino effect starts, we simply need to find something that generalizes up to 𝑘.
A different approach to the problem could include utilizing differential geometry
as opposed to an analytical one. One idea to do this is looking at the curvature
of images, possibly using the Laplacian Equation.
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