
Box Partitions
Max Misterka Homeschool Harrisonburg, VA 9th grade

Introduction
Recall that the Riemann integral of a function f : Rn → Rm is defined by partitioning the region of integration
into boxes of size ∆V = ∆x1∆x2 · · ·∆xn and letting ∆xi approach 0 for each i . The value f (xβ) ∆V is
summed over all boxes β, where xβ is any point inside β. The integral is the limit of this sum as the box size
goes to 0.
Box partitions are a way of generalizing this to functions with any Hausdorff space as their domain, and a
complete normed vector space (Banach space) as their codomain. A box partition is a net (a generalization of
sequence) of finite partitions whose elements “shrink”. Instead of defining the integral of a function, we will
define the mean. There is a relatively simple condition that can be put on a box partition of a compact
Hausdorff space to guarantee that the mean of any continuous function exists. Also, it turns out that every
compact regular Hausdorff space has a box partition, assuming the axiom of choice.

Notation and Background
Here is the notation we will use in this poster:

X is a Hausdorff space,

A is a directed set,

B is a Banach space over R or C, and

f is a continuous function from X to B .

Background:

A Banach space is a vector space with a norm ‖ · ‖ that is complete (any Cauchy sequence converges).

A directed set is a set A with a relation “≥” that is reflexive, transitive, and such that every pair of
elements has an upper bound.

Given a family (Ai) of directed sets, their Cartesian product
∏

Ai is also a directed set, where
(ai) ≥ (bi) if and only if ai ≥ bi for all i in the index set. (The relation “≥” does not have to be a
total order.)

A net is an indexed family (xa)a∈A, where A is a directed set. When the xa are in a Hausdorff space X ,
we will write lima→∞ xa for the value to which (xa) converges (if it exists).

A topological space X is regular if for any point x ∈ X and any closed set C not containing x , there
exist disjoint neighborhoods of x and C .

A topological space X is compact if every open cover of X has a finite subcover.

Definitions
Definition

A box partition of X is a net (Pa)a∈A of finite partitions of X that satisfies the local shrink condition:
Let U be a nonempty open set, and let x ∈ U . Then, there is some neighborhood V of x such that for all
sufficiently large a, all elements of Pa that intersect V are contained in U .

Note: For a box partition (Pa), we will call the elements of Pa “boxes”.

Definition

A selector is a net (Xa)a∈A of finite subsets of X such that for any x ∈ X , there exists a net (xa)a∈A that
converges to x , where xa ∈ Xa.

Definition

Let (Pa) be a box partition. A selector (Xa) is called a selector for (Pa) if for all a ∈ A and all β ∈ Pa, the set
Xa ∩ β contains exactly one element. This means that a selector for a box partition chooses one element from
each box.

Definition

Let (Xa) be a selector in X . The mean of a function f : X → B using the selector (Xa) is defined as the
following limit, if it exists:

mean f = lim
a→∞

1

|Xa|
∑
x∈Xa

f (x).

Definition

Let (Xa) be a selector. Define the relative measure with respect to (Xa) of two subspaces R and S to be

|R : S | = lim
a→∞

|Xa ∩ R |
|Xa ∩ S |

,

if the limit exists.

Definition

If (Xa) is a selector for a box partition (Pa), then we say that (Pa) is uniform with respect to (Xa) if

lim
a→∞

max
β,γ∈Pa

|β : γ| = 1,

where |β : γ| denotes the relative measure with respect to (Xa).

Examples
Here are some examples of box partitions and selectors:

Example

The unit interval [0, 1] with the standard topology has a box partition (Pn)n∈N, where

Pn =
{[

0, 1
n

)
,
[

1
n,

2
n

)
, . . . ,

[
n−1
n , 1

]}
.

Similarly, [0, 1] has a selector (Xn)n∈N where

Xa =
{

0, 1
n,

2
n, . . . ,

n−1
n

}
,

and it is a selector for (Pn). If a function f : [0, 1]→ Rm is Riemann integrable, then its mean is equal to its
integral.

Example

Any finite Hausdorff space X has a “discrete” box partition (Pa)a∈{0}, where P0 is the partition of X into
one-element sets.

We can also construct selectors and box partitions from other selectors and box partitions:

Example

If (Pa) is a box partition and Y ⊆ X , then there is a subspace box partition (P ′a) on Y defined by
P ′a = {β ∩ Y | β ∈ Pa}.

Example

If (X (i))i∈I is a family of Hausdorff spaces with box partitions (P
(i)
a ), then (Qa) defined by Qa =

⋃
P

(i)
a is a box

partition (the disjoint union box partition) for
⊔
X (i), and (Ra) defined by

Ra =

{∏
i∈I

β(i)

∣∣∣∣∣ β(i) ∈ P (i)
a

}
is a box partition (the product box partition) for

∏
X (i). The disjoint union selector and product selector of a

family of selectors can be defined similarly.
Taking the product of the selector in the first example with itself k times gives a selector for [0, 1]k, and the
mean of a Riemann integrable function is its integral.

Existence of a Box Partition
Let X be a compact regular Hausdorff space. How can we prove existence of a box partition?

For each x ∈ X , let Ax be the directed set of all open sets containing x , where U ≥ V means U ⊆ V .
Two elements U ,V ∈ Ax have an “upper bound”: their intersection U ∩ V .

Take the product A =
∏

x∈X Ax . This is the directed set we will use as the index set of the box
partition.

For each a = (Ux) ∈ A, let Ca be the open cover {Ux | x ∈ X} of X .

Since X is compact, there exists a finite subcover C ′a = {Ux | x ∈ Ya} of Ca, where Ya ⊆ X .

Given the open cover C ′a of X , we can “remove the overlap” of the sets in C ′a to get a refinement
(whose elements are not necessarily open) that is a finite partition

Pa = {βa,x | a ∈ A, x ∈ Y }

of X .

To remove the overlap, let (yn)n<N be a well-ordering of Y , where N is an ordinal number. (This uses
the axiom of choice.) Recursively define βa,x for each x ∈ Y by

βa,yn = Uyn \

(⋃
k<n

βa,yk

)
.

Then we get a box partition (Pa)a∈A of X , as long as the local shrink condition is satisfied.

To prove the local shrink condition for (Pa), let U be a neighborhood of a point x0 ∈ X , and we will
find an index a0 ∈ A such that for all a ≥ a0, the box in Pa containing x0 is contained in U . By
Theorem 12, this is equivalent to the local shrink condition. (Here is where we use regularity of X .)

For a point x ∈ X , define

Ux =

{
U if x ∈ U ,

X \ {x0} if x /∈ U .

Let a0 = (Ux)x∈X .

Let a = (U ′x) ≥ (Ux) = a0. Let x ∈ Ya such that βa,x is the box in Pa containing x0. If x /∈ U , then
x0 ∈ βa,x ⊆ Ux = X \ {x0}, which is a contradiction. So x ∈ U , which means βa,x ⊆ U .

Therefore, (Pa) satisfies the local shrink condition, so it is a box partition.

Two Selectors for a Box Partition
Let X be compact, and let (Pa) be a box partition of X .

The red and green points are from two different selectors (Xa) and (Ya) for the box partition (Pa). Let
f : X → B be continuous, and let ε > 0. By Theorem 7, the diameter of f (β) is less than ε for all boxes
β ∈ Pa for sufficiently large a ∈ A. So for all sufficiently large a, all pairs of selector points x and y that are in
the same box in Pa satisfy ‖f (x)− f (y)‖ < ε, which means that the average distance between the two
selectors (over all boxes in Pa) is also less than ε. This average distance approaches (as a→∞) the
difference between the mean of f using (Xa) and the mean of f using (Ya). Therefore, the means are the
same. This proves Theorem 8.

Theorems
1 Given a selector (Xa), the set of all continuous functions f : X → B for which the mean exists (when

using (Xa) as the selector) is a vector space (under pointwise addition and scalar multiplication). On
that vector space, the function that maps f to mean f is linear.

2 Let B and C be Banach spaces, and let L : B → C be a continuous linear map. For any selector (Xa),
and function f : X → B such that mean f exists, we have

mean L ◦ f = L(mean f ).

3 Suppose that the Banach space B is a Banach algebra, with a product operator “·”. Let X and Y be
Hausdorff spaces with selectors (Xa) and (Ya) respectively, and let f : X → B and g : Y → B . Define
a function h : X × Y → B by h(x , y) = f (x) · g(y). If meanX f and meanY g exist, then

meanX×Y h =
(

meanX f
)
·
(

meanY g
)
,

using the product selector of (Xa) and (Ya).

4 Given a box partition, there exists a selector for that box partition, assuming the axiom of choice.

5 Let X be finite, and let (Pa) be a box partition. For all sufficiently large a, Pa is the partition of X into
one-element sets.

6 If X is finite, the mean of a function f : X → B exists when using any selector in X , and it always
agrees with the usual definition of mean.

7 Let (Pa) be a box partition of X , let S ⊆ X be compact, and let f : X → B be continuous. For all
ε > 0, there exists an a0 ∈ A such that for all a ≥ a0, any box β ∈ Pa, and any x , y ∈ β ∩ S , we have
‖f (x)− f (y)‖ < ε. (This is similar to the theorem that on a compact subspace of a metric space,
every continuous function is uniformly continuous.)

8 Let (Pa) be a box partition of a compact Hausdorff space X . Then, the mean of a function f : X → B
is the same using any selector (Xa) for the box partition (Pa). This allows us to define the mean of f if
we have a box partition but haven’t chosen a selector for it (assuming the axiom of choice).

9 Let X be the disjoint union of two compact Hausdorff spaces R and S . Let (Pa) be a box partition for
X , and let f : X → B be continuous. If meanR f |R and meanS f |S exist when using the subspace box
partitions, then

mean f = |R : X | ·meanR f |R + |S : X | ·meanS f |S .
10 If (Pa) is uniform with respect to one selector (Xa) for (Pa), then it is uniform with respect to every

selector for (Pa), and we say that (Pa) is a uniform box partition.

11 When using a uniform box partition of a compact Hausdorff space, the mean of a continuous function
always exists.

12 If X is a compact regular Hausdorff space, then the local shrink condition on (Pa) is equivalent to the
condition that for any neighborhood U of a point x ∈ X , the box in Pa containing x is contained in U
for all sufficiently large a ∈ A.

13 Every compact regular Hausdorff space has a box partition, assuming the axiom of choice.

Conjectures
1 Given a selector (Xa), there always exists a box partition (Pa) such that (Xa) is a selector for (Pa).

2 Every compact regular Hausdorff space has a uniform box partition.

3 Let X = [0, 1] and (Xa) be the selector from the first example. Then, there exist two sets R and S
such that the limit defining |R : S | is bounded but oscillates forever.

4 For a uniform box partition of a compact Hausdorff space, Theorem 11 says that the mean of a
continuous function always exists. Is this true for any subspace box partition of a uniform box
partition?

5 The regularity condition and/or the compactness condition can be removed from Theorem 13.


