Introduction

Recall that the Riemann integral of a function $f : \mathbb{R}^n \to \mathbb{R}^m$ is defined by partitioning the region of integration into boxes of size $\Delta V = \Delta x_1 \Delta x_2 \cdots \Delta x_n$ and letting Δx_i approach 0 for each *i*. The value $f(\mathbf{x}_\beta) \Delta V$ is summed over all boxes β , where \mathbf{x}_{β} is any point inside β . The integral is the limit of this sum as the box size goes to 0.

Box partitions are a way of generalizing this to functions with any Hausdorff space as their domain, and a complete normed vector space (Banach space) as their codomain. A box partition is a net (a generalization of sequence) of finite partitions whose elements "shrink". Instead of defining the integral of a function, we will define the mean. There is a relatively simple condition that can be put on a box partition of a compact Hausdorff space to guarantee that the mean of any continuous function exists. Also, it turns out that every compact regular Hausdorff space has a box partition, assuming the axiom of choice.

Notation and Background

Here is the notation we will use in this poster:

- X is a Hausdorff space,
- A is a directed set,
- \blacksquare B is a Banach space over \mathbb{R} or \mathbb{C} , and
- f is a continuous function from X to B.

Background:

- A Banach space is a vector space with a norm $\|\cdot\|$ that is complete (any Cauchy sequence converges).
- A directed set is a set A with a relation " \geq " that is reflexive, transitive, and such that every pair of elements has an upper bound.
- Given a family (A_i) of directed sets, their Cartesian product $\prod A_i$ is also a directed set, where $(a_i) \ge (b_i)$ if and only if $a_i \ge b_i$ for all i in the index set. (The relation " \ge " does not have to be a total order.)
- A net is an indexed family $(x_a)_{a \in A}$, where A is a directed set. When the x_a are in a Hausdorff space X, we will write $\lim_{a\to\infty} x_a$ for the value to which (x_a) converges (if it exists).
- A topological space X is *regular* if for any point $x \in X$ and any closed set C not containing x, there exist disjoint neighborhoods of x and C.
- A topological space X is *compact* if every open cover of X has a finite subcover.

Definitions

Definition

A box partition of X is a net $(P_a)_{a \in A}$ of finite partitions of X that satisfies the local shrink condition: Let U be a nonempty open set, and let $x \in U$. Then, there is some neighborhood V of x such that for all sufficiently large a, all elements of P_a that intersect V are contained in U.

Note: For a box partition (P_a) , we will call the elements of P_a "boxes".

Definition

A selector is a net $(X_a)_{a \in A}$ of finite subsets of X such that for any $x \in X$, there exists a net $(x_a)_{a \in A}$ that converges to x, where $x_a \in X_a$.

Definition

Let (P_a) be a box partition. A selector (X_a) is called a *selector for* (P_a) if for all $a \in A$ and all $\beta \in P_a$, the set $X_a \cap \beta$ contains exactly one element. This means that a selector for a box partition chooses one element from each box.

Definition

Let (X_a) be a selector in X. The mean of a function $f: X \to B$ using the selector (X_a) is defined as the following limit, if it exists:

mean
$$f = \lim_{a \to \infty} \frac{1}{|X_a|} \sum_{x \in X_a} f(x).$$

Definition

Definition

Let (X_a) be a selector. Define the *relative measure with respect to* (X_a) of two subspaces R and S to be

$$|R:S| = \lim_{a \to \infty} \frac{|X_a \cap R|}{|X_a \cap S|},$$

if the limit exists.

If (X_a) is a selector for a box partition (P_a) , then we say that (P_a) is uniform with respect to (X_a) if lim max $|\beta:\gamma|=1$

$$a \rightarrow \infty \beta, \gamma \in P_a$$

where $|\beta : \gamma|$ denotes the relative measure with respect to (X_a) .

Box Partitions

Max Misterka

Homeschool

Examples

Here are some examples of box partitions and selectors: Example

The unit interval [0, 1] with the standard topology has a box partition $(P_n)_{n \in \mathbb{N}}$, where $P_n = \left\{ \left[0, \frac{1}{n}\right), \left[\frac{1}{n}, \frac{2}{n}\right), \dots, \left[\frac{n-1}{n}, 1\right] \right\}.$

Similarly, [0, 1] has a selector $(X_n)_{n \in \mathbb{N}}$ where $X_{a} = \left\{0, \frac{1}{n}, \frac{2}{n}, \ldots, \frac{n-1}{n}\right\},\,$

and it is a selector for (P_n) . If a function $f : [0,1] \to \mathbb{R}^m$ is Riemann integrable, then its mean is equal to its integral.

Example

Any finite Hausdorff space X has a "discrete" box partition $(P_a)_{a \in \{0\}}$, where P_0 is the partition of X into one-element sets.

We can also construct selectors and box partitions from other selectors and box partitions: Example

If (P_a) is a box partition and $Y \subseteq X$, then there is a subspace box partition (P'_a) on Y defined by $P'_{a} = \{\beta \cap Y \mid \beta \in P_{a}\}.$

Example

If $(X^{(i)})_{i \in I}$ is a family of Hausdorff spaces with box partitions $(P_a^{(i)})$, then (Q_a) defined by $Q_a = \bigcup P_a^{(i)}$ is a box partition (the *disjoint union box partition*) for $\bigsqcup X^{(i)}$, and (R_a) defined by

 $R_{a} = \left\{ \prod_{i=1}^{n} \beta^{(i)} \mid \beta^{(i)} \in P_{a}^{(i)} \right\}$

is a box partition (the product box partition) for $\prod X^{(i)}$. The disjoint union selector and product selector of a family of selectors can be defined similarly. Taking the product of the selector in the first example with itself k times gives a selector for $[0, 1]^k$, and the

mean of a Riemann integrable function is its integral.

Existence of a Box Partition

Let X be a compact regular Hausdorff space. How can we prove existence of a box partition?

- For each $x \in X$, let A_x be the directed set of all open sets containing x, where $U \ge V$ means $U \subseteq V$. Two elements $U, V \in A_x$ have an "upper bound": their intersection $U \cap V$.
- Take the product $A = \prod_{x \in X} A_x$. This is the directed set we will use as the index set of the box partition.
- For each $a = (U_x) \in A$, let \mathcal{C}_a be the open cover $\{U_x \mid x \in X\}$ of X.
- Since X is compact, there exists a finite subcover $C'_a = \{U_x \mid x \in Y_a\}$ of C_a , where $Y_a \subseteq X$.
- Given the open cover \mathcal{C}'_a of X, we can "remove the overlap" of the sets in \mathcal{C}'_a to get a refinement (whose elements are not necessarily open) that is a finite partition

$$P_{a} = \{\beta_{a,x} \mid a \in \mathcal{A}\}$$

of X.

To remove the overlap, let $(y_n)_{n < N}$ be a well-ordering of Y, where N is an ordinal number. (This uses the axiom of choice.) Recursively define $\beta_{a,x}$ for each $x \in Y$ by

$$\beta_{a,y_n} = U_{y_n} \setminus \left(\bigcup_{k < n} \beta_{a,y_k} \right).$$

- Then we get a box partition $(P_a)_{a \in A}$ of X, as long as the local shrink condition is satisfied. To prove the local shrink condition for (P_a) , let U be a neighborhood of a point $x_0 \in X$, and we will find an index $a_0 \in A$ such that for all $a \ge a_0$, the box in P_a containing x_0 is contained in U. By
- For a point $x \in X$, define

$$U_x = \begin{cases} U \\ X \setminus \{x_0\} \end{cases}$$

- Let $a_0 = (U_x)_{x \in X}$.
- Let $a = (U'_x) \ge (U_x) = a_0$. Let $x \in Y_a$ such that $\beta_{a,x}$ is the box in P_a containing x_0 . If $x \notin U$, then $x_0 \in \beta_{a,x} \subseteq U_x = X \setminus \{x_0\}$, which is a contradiction. So $x \in U$, which means $\beta_{a,x} \subseteq U$. • Therefore, (P_a) satisfies the local shrink condition, so it is a box partition.

Harrisonburg, VA

9th grade

 $A, x \in Y$

Theorem 12, this is equivalent to the local shrink condition. (Here is where we use regularity of X.)

if $x \in U$, if $x \notin U$.

Two Selectors for a Box Partition

Let X be compact, and let (P_a) be a box partition of X.

same. This proves Theorem 8.

that vector space, the function that maps f to mean f is linear.

and function $f: X \to B$ such that mean f exists, we have

using the product selector of (X_a) and (Y_a) .

- one-element sets.
- agrees with the usual definition of mean.
- every continuous function is uniformly continuous.)
- partitions, then

- selector for (P_a) , and we say that (P_a) is a *uniform box partition*.
- always exists.
- for all sufficiently large $a \in A$.

- **2** Every compact regular Hausdorff space has a *uniform* box partition.
- partition?

The red and green points are from two different selectors (X_a) and (Y_a) for the box partition (P_a) . Let $f: X \to B$ be continuous, and let $\epsilon > 0$. By Theorem 7, the diameter of $f(\beta)$ is less than ϵ for all boxes $\beta \in P_a$ for sufficiently large $a \in A$. So for all sufficiently large a, all pairs of selector points x and y that are in the same box in P_a satisfy $||f(x) - f(y)|| < \epsilon$, which means that the *average* distance between the two selectors (over all boxes in P_a) is also less than ϵ . This average distance approaches (as $a \to \infty$) the difference between the mean of f using (X_a) and the mean of f using (Y_a) . Therefore, the means are the

I heorems

Given a selector (X_a) , the set of all continuous functions $f : X \to B$ for which the mean exists (when using (X_a) as the selector) is a vector space (under pointwise addition and scalar multiplication). On

2 Let B and C be Banach spaces, and let $L: B \to C$ be a continuous linear map. For any selector (X_a) ,

mean $L \circ f = L(\text{mean } f)$.

Suppose that the Banach space B is a Banach algebra, with a product operator " \cdot ". Let X and Y be Hausdorff spaces with selectors (X_a) and (Y_a) respectively, and let $f : X \to B$ and $g : Y \to B$. Define a function $h: X \times Y \to B$ by $h(x, y) = f(x) \cdot g(y)$. If mean_X f and mean_Y g exist, then

$$\operatorname{mean}_{X\times Y} h = (\operatorname{mean}_X f) \cdot (\operatorname{mean}_Y g),$$

Given a box partition, there exists a selector for that box partition, assuming the axiom of choice. **1** Let X be finite, and let (P_a) be a box partition. For all sufficiently large a, P_a is the partition of X into

If X is finite, the mean of a function $f: X \to B$ exists when using any selector in X, and it always

I Let (P_a) be a box partition of X, let $S \subseteq X$ be compact, and let $f : X \to B$ be continuous. For all $\epsilon > 0$, there exists an $a_0 \in A$ such that for all $a \ge a_0$, any box $\beta \in P_a$, and any $x, y \in \beta \cap S$, we have $\|f(x) - f(y)\| < \epsilon$. (This is similar to the theorem that on a compact subspace of a metric space,

1 Let (P_a) be a box partition of a compact Hausdorff space X. Then, the mean of a function $f : X \to B$ is the same using any selector (X_a) for the box partition (P_a) . This allows us to define the mean of f if we have a box partition but haven't chosen a selector for it (assuming the axiom of choice).

If Let X be the disjoint union of two compact Hausdorff spaces R and S. Let (P_a) be a box partition for X, and let $f: X \to B$ be continuous. If mean_R $f|_R$ and mean_S $f|_S$ exist when using the subspace box

mean $f = |R : X| \cdot \text{mean}_R f|_R + |S : X| \cdot \text{mean}_S f|_S$.

If (P_a) is uniform with respect to one selector (X_a) for (P_a) , then it is uniform with respect to every

11 When using a uniform box partition of a compact Hausdorff space, the mean of a continuous function

If X is a compact regular Hausdorff space, then the local shrink condition on (P_a) is equivalent to the condition that for any neighborhood U of a point $x \in X$, the box in P_a containing x is contained in U

Every compact regular Hausdorff space has a box partition, assuming the axiom of choice.

Conjectures

1 Given a selector (X_a) , there always exists a box partition (P_a) such that (X_a) is a selector for (P_a) .

3 Let X = [0, 1] and (X_a) be the selector from the first example. Then, there exist two sets R and S such that the limit defining |R:S| is bounded but oscillates forever.

4 For a uniform box partition of a compact Hausdorff space, Theorem 11 says that the mean of a continuous function always exists. Is this true for any subspace box partition of a uniform box

5 The regularity condition and/or the compactness condition can be removed from Theorem 13.