PRISM

Non-local approximation properties of $\varphi(x)=x^{-1} \ln \left(1+x^{2}\right)$

Kira Pierce
Longwood University

Examples

Vandermonde Matrix
The Vandermonde Matrix is a matrix in which each element increases in a geometric pattern by row or column.

$$
V=\left[\begin{array}{ccccc}
1 & x_{1} & x_{1}^{2} & \ldots & x_{1}^{n-1} \\
1 & x_{2} & x_{2}^{2} & \ldots & x_{2}^{n-1} \\
\vdots & \vdots & \vdots & \ldots & \vdots \\
1 & x_{m} & x_{m}^{2} & \ldots & x_{m}^{n-1}
\end{array}\right]
$$

The determinant of a square Vandermonde matrix can be expressed as

$$
\operatorname{det}(V)=\prod_{1<i<i<n}\left(x_{j}-x_{i}\right) .
$$

 sentation. For our work, we will work to prove the following theorem.

	Main Result		
Suppose $f \in C[a, b]$. For any ε	>0, there exists $s \in S$, such that		
	$\\|f-s\\|_{L_{\infty}}<\varepsilon$.		

We begin with the Taylor Series for

$$
\begin{aligned}
& \text { which yields } \\
& \qquad \varphi(x-y):=\ln |y| \sum_{j=1}^{\infty} \frac{A_{j}(x)}{y^{j}}+\sum_{k=2}^{\infty} \frac{B_{k}(x)}{y^{k}}
\end{aligned}
$$

for some polynomials $A_{j}(x)$ and $B_{k}(x)$. Using methods from linear algebra, we then collect A_{j} Our interest was spurred by approximation theoretic results, namely those found in [1], [2], and [3].

$$
\begin{aligned}
& \text { The Cauchy Product is the blending of two power series. Let } \\
& \qquad \sum_{n=0}^{\infty} a_{n} \text { and } \sum_{n=0}^{\infty} b_{n} \\
& \text { be two series. The Cauchy Product of these two series is defined as the sum } \\
& \qquad \sum_{n=1}^{\infty} a_{n} \text { where } c_{n}=\sum_{k=0}^{n} a_{k} b_{n-k} \text { for all } n \in 0,1,2, \ldots
\end{aligned}
$$

geometric pattern by row or columr

$\varphi(x)$	$=x^{-1} \ln \left(1+x^{2}\right)$
$\frac{\partial}{\partial y}(\varphi(x-y))$	$=\frac{-2(x-y)}{1+(x-y)^{2}}$
	$=\sum_{n=0}^{\infty} \frac{2 A_{k-1}(x)}{y^{k}}+\sum_{k==2}^{\infty} \frac{-2 x A_{k-2}(x)}{y^{k}}$
	$=\frac{2 A_{0}(x)}{y}+\sum_{k=2}^{\infty} \frac{2 A_{k-1}(x)-22 A_{k-2}(x)}{y^{k}}$

And from [1] we know that $A_{n}(x)=(n+1) x^{n}+$ lower order terms
Note: $A_{0}=1$ So we get that:

$$
\frac{\partial}{\partial y}(\varphi(x-y))=\frac{2}{y}+\sum_{k=2}^{\infty} \frac{B_{k}(x)}{y^{k}}
$$

$$
\text { We can then write the sum of the series } \quad \sum_{j=1}^{\infty} \frac{A_{j}(x)}{y^{j}}+\sum_{k=2}^{\infty} \frac{B_{k}(x)}{y^{k}}
$$

with

$$
A_{j}=\ln |y| \sum_{j=1}^{\infty} \frac{-2 x^{j-1}}{y^{j}} \text { and } B_{k}=\left[\sum_{j=1}^{\infty} \frac{x^{j-1}}{y^{j}}\right]\left[\sum_{k=1}^{\infty}\left(\frac{B_{k+1}(x)}{k}\right) \frac{1}{y^{k}}\right]
$$

Simplifying A_{j}, we get tha
The Cauchy Product is used to simplify B.

$$
\sum_{k=1}^{\infty} \sum_{j=1}^{\infty} \frac{x^{j-1} B_{k+1}(x)}{k} \frac{1}{y^{j+k}}
$$

$\varphi(x)=x^{-1} \ln \left(1+x^{2}\right)$

$$
\begin{aligned}
\frac{\partial}{\partial y}(\varphi(x-y)) & =\frac{-2(x-y)}{1+(-y)^{2}} \\
& =\sum_{n=0}^{\infty} \frac{2 A_{k-1}(x)}{y^{k}}+\sum_{k=2}^{\infty} \frac{-2 x A_{k-2}(x)}{y^{k}} \\
& =\frac{2 A_{0}(x)}{y}+\sum_{k=2}^{2} \frac{2 A_{k-1}(x)-2 x A_{k-2}(x)}{y^{k}}
\end{aligned}
$$

$$
\text { When } m=j+k \text { and } j=m-k \text {, we then use substitution and get }
$$

$$
\sum_{m=2}^{\infty}\left(\sum_{k=1}^{m-1} \frac{x^{m-k-1} B_{k+1}(x)}{k}\right) \frac{1}{y^{m}}
$$

$$
\text { where } 2 \leq m \leq \infty \text { and } 1 \leq k \leq m-
$$

So,

$$
C_{m}(x)=\sum_{k=1}^{m-1} \frac{x^{m-k-1} 2 x^{k}}{k}=\left(\sum_{k=1}^{m-1} \frac{2}{k}\right) x^{m-}
$$

Approximations and Differences in Functions

4th degree approximation and difference in polynomials.

Acknowledgments and References

Dr. Jeff Ledford for his patient guidance, enthusiastic encouragement and useful critiques of this research work. - Brock Erwin and Calvin Foster for them working alongside me during the term, contributing insightfu comments, and assisting me in completing this wor.
Office of Student Research for supporting this research and granting me this opportunity.
1]. J.Leaford, Approximating continuous functions with scattered translates of the Poisson kernel. Missouri
Math. Sci. 26 (2014), no. 1, 64-69.
[2]. J.Ledford, On the density of scattered translates of the general muliauadratic in C(la,b). New York J. Math. 20
3] M.J.D. Powell.Univariate multiquadric interpolation: Reproduction of linear polynomials, in Multivariate Approximation and Interpolation (Duisberg 1989), Internat. Ser. Numer. Math. 94, 227-240, Birkhäuser, Basel

