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This project concerns approximation properties of the set

S(Ï, X) :=

8
<

:

NX

j=1
ajÏ(x ≠ xj) : aj œ R, xj œ X

9
=

; ,

where X is a scattered sequence and Ï(x) = x≠1 ln(1 + x2). Similar approximation sets are
commonly used in interpolation problems and are especially helpful due to their Fourier repre-
sentation. For our work, we will work to prove the following theorem.

Main Result
Suppose f œ C[a, b]. For any Á > 0, there exists s œ S, such that

Îf ≠ sÎLŒ < Á.

We begin with the Taylor Series for
Ï(x ≠ y) = (x ≠ y)≠1 ln(1 + (x ≠ y)2)

which yields

Ï(x ≠ y) := ln |y|
ŒX

j=1

Aj(x)
yj +

ŒX

k=2

Bk(x)
yk

.

for some polynomials Aj(x) and Bk(x). Using methods from linear algebra, we then collect Aj.
Our interest was spurred by approximation theoretic results, namely those found in [1], [2], and
[3].

Cauchy Product
The Cauchy Product is the blending of two power series. Let

ŒX

n=0
an and

ŒX

n=0
bn

be two series. The Cauchy Product of these two series is defined as the sum
ŒX

n=1
an where cn =

nX

k=0
akbn≠k for all n œ 0, 1, 2, . . .

Vandermonde Matrix
The Vandermonde Matrix is a matrix in which each element increases in a
geometric pattern by row or column.

V =

2

66664

1 x1 x2
1 . . . xn≠1

1
1 x2 x2

2 . . . xn≠1
2

... ... ... . . . ...
1 xm x2

m . . . xn≠1
m

3

77775

The determinant of a square Vandermonde matrix can be expressed as
det(V ) =

Y

1Æi<jÆn

(xj ≠ xi).

Ï(x) = x≠1 ln(1 + x2)

ˆ

ˆy
(Ï(x ≠ y)) = ≠2(x ≠ y)

1 + (x ≠ y)2

=
ŒX

n=0

2Ak≠1(x)
yk

+
ŒX

k=2

≠2xAk≠2(x)
yk

= 2A0(x)
y

+
ŒX

k=2

2Ak≠1(x) ≠ 2xAk≠2(x)
yk

And from [1] we know that An(x) = (n + 1)xn + lower order terms
Note:A0 = 1 So we get that:

ˆ

ˆy
(Ï(x ≠ y)) = 2

y
+

ŒX

k=2

Bk(x)
yk

We can then write the sum of the series ŒX

j=1

Aj(x)
yj

+
ŒX

k=2

Bk(x)
yk

With

Aj = ln |y|
ŒX

j=1

≠2xj≠1

yj
and Bk =

2

4
ŒX

j=1

xj≠1

yj

3

5
" ŒX

k=1

✓
Bk+1(x)

k

◆ 1
yk

#

Simplifying Aj, we get that
Aj = ≠2xj≠1, j Ø 1.

The Cauchy Product is used to simplify Bk.
ŒX

k=1

ŒX

j=1

xj≠1Bk+1(x)
k

1
yj+k

.

When m = j + k and j = m ≠ k, we then use substitution and get
ŒX

m=2

 
m≠1X

k=1

xm≠k≠1Bk+1(x)
k

!
1

ym

where 2 Æ m Æ Œ and 1 Æ k Æ m ≠ 1
So,

Cm(x) =
m≠1X

k=1

xm≠k≠12xk

k
=
 

m≠1X

k=1

2
k

!
xm≠1
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4th degree approximation and difference in polynomials.

Figure 1. Ï(x) 4x4 Approximation Figure 2. Ï(x) 4x4 Difference
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As shown, we know that our polynomials of Aj(x) form a basis for �, therefore
Ï(x) = x≠1 ln(1 + x2) can be used for its approximating properties. Furthermore, it is true that
the same approximation scheme is applicable for the arbitrary values of q and r in

(1 + xq)r

where q is any natural number and r is any real number that is not a natural number.
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