Introduction

A Sierpiński number is an odd integer k such that $k \cdot 2^{n}+1$ is composite for all $n \in \mathbb{N}$. A Riesel number is an odd integer k such that $k \cdot 2^{n}-1$ is composite for all $n \in \mathbb{N}$. A covering system is a set of congruences $x \equiv a_{i}\left(\bmod n_{i}\right)$ such that all integers satisfy at least one of the congruences.
Filaseta, Finch, and Kozek asked the following: for a polynomial $f(k)$, is there a k such that $f(k)$ is a Sierpinski number?

In 2013, Finch, Harrington, and Jones proved the following theorem.
Theorem. Let $f(x)=x^{r}+x+c \in \mathbb{Z}[x]$, where $0 \leq c \leq 100$. O (Nonlinear Sierpiński Numbers) For any positive integer r and any $c \in C_{1}$ there exist infinitely many positive integers k such that $f(k) \cdot 2^{n}+1$ is composite for all integers $n \geq 1$. 0 (Nonlinear Riesel Numbers) For any positive integer r, and any $c \in C_{2}$, there exist infinitely many positive integers k such that $f(k) \cdot 2^{n}-1$ is composite for all integers $n \geq 1$.

Binomial Coefficients and Sierpiński numbers

Lemma. Let $p=641$, and let

$\mathscr{G}=\{\gamma \in[1, p-1]: \gamma$ is odd $\} \cup$

$\{2,6,8,10,12,22,24,30,32,34,44,46,48,52,566,66,70,74,80,84,86,94,100,102$
104, ,110, 118, 120, 134, 136, 140, 144, 146, 160, , 162, 174, 176, 182, 184, 190, 194 $198,200,202,208,222,224,236,248,250,252,260,270,292,294,304,312,318$, $334,336,338,348,366,368,374,402,414,424,426,454,474,530,546,552,578\}$.

Then there exists a function $\kappa: \mathscr{G} \rightarrow[0, p-1]$ such that for every $r \in \mathscr{G},\binom{\kappa(r)}{r} \equiv-1(\bmod p)$
Theorem 1. Let $p=641$, and recall \mathscr{G} defined in the Lemma. Let r be a nonnegative integer with base p representation $r=\sum_{i=0}^{j} r_{i} p^{i}$, where $r_{i} \in[0, p-1]$ for all $i \in[0, j]$, such that at least one of the following conditions is satisfied:
O there exists $i_{0} \in[0, j]$ such that $r_{i_{0}} \in \mathscr{G}$; or
O there exists $i_{1}, i_{2} \in[0, j]$ such that $r_{i}, r_{i_{2}} \in[1,515]$
Then there exist infinitely many positive integers k such that $\binom{k}{r}$ is a Sierpiński number.
Corollary. Let r be an odd positive integer. Then there exist infinitely many positive integers k such that $\binom{k}{r}$ is a Sierpiński number.

Generalizations of Sierpiński and Riesel Binomial Coefficients

For a positive integer a, we call a positive integer k an a-Sierpiński (resp. a-Riesel) number if $\operatorname{gcd}(k+1, a-1)=1$ (resp.
$\operatorname{gcd}(k-1, a-1)=1), k$ is not a power of a, and $k \cdot a^{n}+1$
(resp. $k \cdot a^{n}-1$) is composite for all natural numbers n.

The following theorem extends the corollary to a-Sierpiński and a-Riesel numbers.

Theorem 2. Let a and r be positive integers such that $a+1$ is not a power of 2 and r is odd. Further assume that there exists a positive integer τ such that $a^{2^{\tau}}-1$ is divisible by distinct primes p_{0} and $p_{\tau^{\prime}}$ where neither p_{0} nor p_{τ} divides $a^{2^{\widetilde{\epsilon}}}-1$ for any $\widetilde{\ell} \in[0, \tau-1]$. Then each of the following holds:
O there exist infinitely many positive integers k such that $\binom{k}{r}$ is an a-Sierpiński number;
O there exist infinitely many positive integers k such that $\binom{k}{r}$ is an a-Riesel number.

References

A. Brunner, C. Caldwell, D. Krywaruczenko, and C. Lownsdale, Generalizing Sierpiński numbers to base b, New Aspects of AnalyticN
Surikaisekikenkyusho Kokyuroku (2009), 69 -79.
D. Baczkowski J.Eitner. C.F.Finch, M. Kozek, and B. Suminski, Polygonal, Sierpiński, and D. Baczkowkj and J. Eitner, Polyonal.Siergingki-Riesel sequences with terms having at
Y. G. Chen, On integers of the form $k-2^{n}$ and $k 2^{n}+1$, J. Number Theory $\mathbf{8 9}$ (2001),
$121-125$.
M. Filaseta, C. Finch, and M. Kozek, On powers associated with Sierpiński numbers, 1940.
C. Finch, J. Harrington, and L. Jones, Nonlinear Sierpiński and Riesel numbers, J. Number
J. Harrington Two questions concerning coverings systems of the integers, Int. J.
Number Theory 11 (2015), $1739--1750$.
E. Lucas, Sur les congruences des nombres eulériens et des coefficients différentiels des
fonctionstrigonométriques suivant un module premier, Bull. Soc. Math. France $\mathbf{6}$
(1878), 49-54.
H. Riesel, Några stora primal, Elementa 39 (1956), 258--260
W. Sierpiński, Sure un problème concernant les nombres $k 2^{n}+1$, Elem. Math. 15 (1960),
K. Zsigmondy, Zur Theorie der Potenzreste, Monatsch. Math. Phys. 3 (1892), 265--284.

Generalizations using (a, b)-primitive
m-coverings
Harrington extended the concept of (2,1)-primitve $m-$ coverings in 2015 with the following definition: A covering system
$\mathscr{C}=\left\{q_{\ell}\left(\bmod m_{\ell}\right)\right\}_{\ell=1}^{\tau}$ is called an (a, b)-primitive m-covering if every integer satisfies at least m congruences of \mathscr{C} and there exist distinct primes $p_{1}, p_{2}, \ldots, p_{\tau}$ such that for each $\ell \in[1, \tau], p_{\ell} \mid a^{m_{\ell}}-b^{m_{\ell}}$ and $p_{\ell}+a^{\widetilde{\ell}}-b^{\widetilde{\ell}}$ for any $\widetilde{\ell}<m_{\ell}$. It is a (a, b)-primitive disjoint m-covering if it can be partitioned into m disjoint (a, b)-primitive 1-covering systems.

Theorem 3. Let a be a positive integer for which there exists an ($a, 1$)-primitive m-covering \mathscr{C}. Then there exist infinitely many positive integers r for which each of the following holds: O there exist infinitely many positive integers k such that $\operatorname{gcd}\left(\binom{k}{r}+1, a-1\right)=1,\binom{k}{r}$ is not a power of a, and $\binom{k}{r} \cdot a^{n}+1$ has at least m distinct prime divisors for all natural numbers n;

O there exist infinitely many positive integers k such that $\operatorname{gcd}\left(\binom{k}{r}-1, a-1\right)=1,\binom{k}{r}$ is not a power of a, and $\binom{k}{r} \cdot a^{n}-1$ has at least m distinct prime divisors for all natural numbers n; and

O if \mathscr{C} is an ($a, 1$)-primitive disjoint m-covering, then there exist infinitely many positive integers k such that
$\operatorname{gcd}\left(\binom{k}{r}+1, a-1\right)=\operatorname{gcd}\left(\binom{k}{r}-1, a-1\right)=1,\binom{k}{r}$ is not a power of a,
$\binom{k}{r} \cdot a^{n}+1$ and $\binom{k}{r} \cdot a^{n}-1$ are composite, and each of $\binom{k}{r} \cdot a^{n}+1$ and $\binom{k}{r} \cdot a^{n}-1$ has at least $\lfloor m / 2\rfloor$ distinct prime divisors for all natural numbers n.

Acknowledgements

These results are based upon work supported by the National Science Foundation under the grant number DMS-1852378. The research was conducted as part of the 2020 Moravian College REU.

