

Introduction

A **Sierpiński number** is an odd integer k such that $k \cdot 2^n + 1$ is composite for all $n \in \mathbb{N}$. A **Riesel number** is an odd integer k such that $k \cdot 2^n - 1$ is composite for all $n \in \mathbb{N}$. A **covering system** is a set of congruences $x \equiv a_i \pmod{n_i}$ such that all integers satisfy at least one of the congruences.

Filaseta, Finch, and Kozek asked the following: for a polynomial f(k), is there a k such that f(k) is a Sierpinski number?

In 2013, Finch, Harrington, and Jones proved the following theorem.

Theorem. Let $f(x) = x^r + x + c \in \mathbb{Z}[x]$, where $0 \le c \le 100$. **O** (Nonlinear Sierpiński Numbers) For any positive integer rand any $c \in C_1$ there exist infinitely many positive integers k such that $f(k) \cdot 2^n + 1$ is composite for all integers $n \ge 1$. **O** (Nonlinear Riesel Numbers) For any positive integer r, and any $c \in C_2$, there exist infinitely many positive integers k such that $f(k) \cdot 2^n - 1$ is composite for all integers $n \ge 1$.

Binomial Coefficients and Sierpiński numbers

Lemma. Let p = 641, and let

 $\mathscr{G} = \{\gamma \in [1, p-1] : \gamma \text{ is odd}\} \cup$

104, 110, 118, 120, 134, 136, 140, 144, 146, 160, 162, 174, 176, 182, 184, 190, 194,198, 200, 202, 208, 222, 224, 236, 248, 250, 252, 260, 270, 292, 294, 304, 312, 318,334, 336, 338, 348, 366, 368, 374, 402, 414, 424, 426, 454, 474, 530, 546, 552, 578

Then there exists a function $\kappa : \mathscr{G} \to [0, p-1]$ such that for every $r \in \mathcal{G}, \left({\kappa(r) \atop r} \right) \equiv -1 \pmod{p}.$

Theorem 1. Let p = 641, and recall \mathcal{G} defined in the Lemma. Let rbe a nonnegative integer with base p representation $r = \sum_{i=0}^{j} r_i p^i$, where $r_i \in [0, p - 1]$ for all $i \in [0, j]$, such that at least one of the following conditions is satisfied:

O there exists $i_0 \in [0,j]$ such that $r_{i_0} \in \mathcal{G}$; or

O there exists $i_1, i_2 \in [0,j]$ such that $r_{i_1}, r_{i_2} \in [1,515]$. Then there exist infinitely many positive integers k such that $\binom{k}{r}$ is a Sierpiński number.

Corollary. Let *r* be an odd positive integer. Then there exist infinitely many positive integers k such that $\binom{k}{r}$ is a Sierpiński number.

Binomial coefficients linked with Sierpiński & Riesel numbers Ashley Armbruster, Grace Barger, Sofya Bykova, Tyler Dvorachek, Emily Eckard, and Yewen Sun Mentors: Joshua Harrington and Tony W. H. Wong

Generalizations of Sierpiński and Riesel Binomial Coefficients

For a positive integer a, we call a positive integer k an a-Sierpiński (resp. *a*-Riesel) number if gcd(k + 1, a - 1) = 1 (resp. gcd(k-1,a-1) = 1), k is not a power of a, and $k \cdot a^n + 1$ (resp. $k \cdot a^n - 1$) is composite for all natural numbers n.

The following theorem extends the corollary to *a*-Sierpiński and *a*-Riesel numbers.

Theorem 2. Let a and r be positive integers such that a + 1 is not a power of 2 and r is odd. Further assume that there exists a positive integer τ such that $a^{2^{\tau}} - 1$ is divisible by distinct primes p_0 and p_{τ} , where neither p_0 nor p_{τ} divides $a^{2^{\ell}} - 1$ for any $\widetilde{\ell} \in [0, \tau - 1]$. Then each of the following holds:

a-Sierpiński number;

a-Riesel number.

References

- A. Brunner, C. Caldwell, D. Krywaruczenko, and C. Lownsdale, Generalizing Sierpiński numbers to base *b, New Aspects of Analytic Number Theory, Proceedings of RIMS, Surikaisekikenkyusho Kokyuroku* (2009), 69--79.
- D. Baczkowski, J. Eitner, C. Finch, M. Kozek, and B. Suminski, Polygonal, Sierpiński, and Riesel numbers, *J. Integer Seq*. **18** (2015), Article 15.8.1.
- D. Baczkowski and J. Eitner, Polyonal-Sierpiński-Riesel sequences with terms having at least two distinct prime divisors, *INTEGERS* **16** (2016), Article A40.
- Y. G. Chen, On integers of the form $k 2^n$ and $k2^n + 1$, J. Number Theory **89** (2001), 121--125.
- M. Filaseta, C. Finch, and M. Kozek, On powers associated with Sierpiński numbers, Riesel numbers, and Polignac's conjecture, *J. Number Theory* **128** (2008), 1916--1940.
- C. Finch, J. Harrington, and L. Jones, Nonlinear Sierpiński and Riesel numbers, *J. Number Theory* **133** (2013), 534--544.
- J. Harrington, Two questions concerning coverings systems of the integers, *Int. J. Number Theory* **11** (2015), 1739--1750.
- E. Lucas, Sur les congruences des nombres eulériens et des coefficients différentiels des fonctions trigonométriques suivant un module premier, *Bull. Soc. Math. France* **6** (1878), 49--54.
- H. Riesel, Några stora primal, *Elementa* **39** (1956), 258--260.
- W. Sierpiński, Sure un problème concernant les nombres $k2^n + 1$, Elem. Math. **15** (1960), 73--74.
- K. Zsigmondy, Zur Theorie der Potenzreste, Monatsch. Math. Phys. 3 (1892), 265--284.

O there exist infinitely many positive integers k such that $\binom{k}{r}$ is an

O there exist infinitely many positive integers k such that $\binom{k}{r}$ is an

Generalizations using (a, b)-primitive *m*-coverings

Harrington extended the concept of (2,1)-primitve m – coverings in 2015 with the following definition: A covering system $\mathscr{C} = \{q_{\ell} \pmod{m_{\ell}}\}_{\ell=1}^{\tau}$ is called an (a, b)-primitive *m*-covering if every integer satisfies at least m congruences of $\mathscr C$ and there exist distinct primes $p_1, p_2, \dots, p_{\tau}$ such that for each $\ell \in [1,\tau]$, $p_{\ell} \mid a^{m_{\ell}} - b^{m_{\ell}}$ and $p_{\ell} \nmid a^{\ell} - b^{\ell}$ for any $\widetilde{\ell} < m_{\ell}$. It is a (a, b)-primitive disjoint *m*-covering if it can be partitioned into m disjoint (a, b)-primitive 1-covering systems.

Theorem 3. Let *a* be a positive integer for which there exists an (a,1)-primitive *m*-covering \mathscr{C} . Then there exist infinitely many positive integers *r* for which each of the following holds: **O** there exist infinitely many positive integers k such that $gcd\left(\binom{k}{r}+1, a-1\right)=1, \binom{k}{r}$ is not a power of a, and $\binom{k}{r} \cdot a^n+1$ has at least m distinct prime divisors for all natural numbers n; \mathbf{O} there exist infinitely many positive integers k such that $gcd\left(\binom{k}{r} - 1, a - 1\right) = 1, \binom{k}{r} \text{ is not a power of } a, \text{ and} \\ \binom{k}{r} \cdot a^n - 1 \text{ has at least } m \text{ distinct prime divisors for all natural}$ numbers *n*; and **O** if \mathscr{C} is an (a,1)-primitive disjoint *m*-covering, then there exist infinitely many positive integers k such that $gcd\left(\binom{k}{r}+1, a-1\right) = gcd\left(\binom{k}{r}-1, a-1\right) = 1, \binom{k}{r} \text{ is not a power}$ of a_i $\binom{k}{r} \cdot a^n + 1$ and $\binom{k}{r} \cdot a^n - 1$ are composite, and each of $\binom{k}{r} \cdot a^n + 1$ and $\binom{k}{r} \cdot a^n - 1$ has at least $\lfloor m/2 \rfloor$ distinct prime divisors for all

natural numbers *n*.

Acknowledgements

These results are based upon work supported by the National Science Foundation under the grant number DMS-1852378. The research was conducted as part of the 2020 Moravian College REU