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Abstract

Pattern avoidance in permutations is a well-studied field of enumerative
combinatorics. We will discuss the classical version for linear permuta-
tions and then introduce a recent variant for cyclic permutations. Finally,
we will present our new results counting cyclic avoidance sets for pairs of
length 4 patterns, and give an example of how those results arise from
counting arguments.

Background

• Let S be a set with #S = n. A permutation of S is a sequence
π = π1, π2, . . . , πn obtained by listing the elements of S in some order.
We will useSn to denote the set of permutations of {1, 2, . . . , n}. This
permutation is of length n.

•A subsequence is a (not necessarily consecutive) sequence contained
within a permutation. We say that π ∈ Sn contains a copy of σ ∈ Sk

if there is a subsequence of length k in π with the same relative order
as σ. On the other hand, we say that π avoids the pattern σ if π does
not contain a copy of σ.
–Example: If π = 13254 contains σ = 132 as a pattern because
the subsequence 154 has the same relative order as σ. We also say
that π avoids the pattern 321 since it does not contain a decreasing
subsequence of length 3.
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We can draw diagrams where the heights of each point is given by
the permutation elements. A copy of 132 is bolded.

•We can also consider a permutation avoiding a set of patterns if it
does not contain a copy of any pattern in the set. We denote the set
of permutations of length n that avoid a set of patterns S as Avn(S).
This is called the avoidance set of S.
–Example: for π ∈ Sn, Avn(π) = Sn− {π}, since the only permu-
tation with the same length as π that avoids π is π itself.

•Counting the number of permutations avoiding a given pattern (or set
of patterns) is a common problem. We call two patterns or sets of pat-
terns Wilf equivalent if their avoidance sets have the same cardinalities.
This is denoted π ≡ π′.

•A special class of Wilf equivalences are the trivial Wilf equivalences,
obtained by applying symmetries of the square to the diagram.
–Example: Applying vertical reflection to 132 gives us 231, so we
get that Avn(132) = Avn(231). For patterns in S3, applying trivial
equivalences like this yield two trivial equivalence classes. Direct
counting yields a non-trivial equivalence between the classes. As
such, all elements of S3 are Wilf equivalent.

Our Problem

•We may also consider cyclic permutations, where we let the end of a permutation
"wrap around" to the beginning. Accordingly, two permutations are considered
the same if one is a rotation of another. We denote cyclic permutations with
brackets.
–Example: The only two cyclic permutations of length 3 are [123] and [132],
as every other permutation is a rotation of one of these.

•We can consider pattern avoidance in the same way as before.
–Example: As a linear permutation, π = 13254 avoided 321. If we consider

[π], however, it no longer does – [π] contains [541] (wrapping around) as a
copy of [321].

• Since we may choose any rotation we like, we standardize to begin with 1.
•There are only six cyclic permutations of length 4; Callan [1] counted the avoid-
ance sets for these.

•Our work is on counting the avoidance sets for all pairs of length 4
patterns.

Results

•There are 15 pairs of cyclic permutations of length 4. Applying trivial Wilf
equivalences gives us 7 trivial equivalence classes.
–Example: Applying reversal (vertical reflection) to the pair {[1234], [1423]}
gives us {[4321], [3241]}, which after rotation to begin with 1 gives us
{[1432], [1324]}. This gives us one such equivalence class.

•We next use counting arguments to determine the size of these classes. A few
of the interesting results are:
–#Avn([1234], [1243]) = 2(n− 2) for n > 2.
–#Avn([1234, [1423]) = 1 +

n−1
2

 for all n.
–#Avn([1324, [1423]) = 2n−2 for n > 1.
We demonstrate one such counting argument next, but also note that after
counting we have 5 total equivalence classes (direct counting provides two non-
trivial Wilf equivalences)

Example Counting Argument

We will now show that #Avn([1324], [1423]) = 2n−2 for n > 1 as a demonstration
of our methods. We proceed by induction. For the base case, we have just one
permutation [12], which trivially avoids [1234], [1432]. Thus #Av2 = 1 = 22−2.
For the inductive step, we will assume that #Avn−1 = 2n−3 and show that ev-
ery permutation in Avn−1 gives us two permutations in Avn, namely where n is
inserted before and after n − 1, and that no other permutations are possible.
This implies that we have twice as many permutations in Avn than Avn−1, so
#Avn = 2(2n−3) = 2n−2 as desired.

[1] David Callan. “Pattern Avoidance in Cyclic Permutations”. In: (2018).

Example Proof (cont.)

First, we show that every permutation in Avn−1 corresponds to two
permutations in Avn by insertion before and after the element n − 1.
Let [π] = [1 . . . n . . .] be in Avn−1. If we insert n before n − 1, then
the new permutation is of the form [π′] = [1 . . . (n)(n − 1) . . .]. Since
[π] was in Avn−1 before insertion, if after insertion it isn’t in Avn, then
n must be involved in the offending pattern copies. If [π′] had a copy
of [1324], then if n is involved, it must be the 4 since it is greater than
all elements. Since n − 1 and n are adjacent in π′ but not [1324],
n− 1 cannot be the 3. Then the copy replacing n with n− 1 is in [π],
contradicting our assumption that [π] was in Avn−1. The same line of
reasoning shows that π′ does not contain [1423], as well as that insertion
of n after n− 1 will still be in Avn.
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Example: A sample permutation in Avn−1, and insertions before and
after n− 1. We see that both of these permutations are in Avn.

To show that no other permutations are in Avn, we will show that no
other insertion of n will work. This follows from the fact that removing n
from a permutation in Avn must result in a permutation in Avn−1, so ev-
ery permutation in Avn must come from inserting n in some permutation
in Avn−1 Given this, assume that we have [π] ∈ Avn−1, but we insert n
before but not adjacent to n−1 to get [π′] = [1 . . . (n) . . . x . . . (n−1)]
in Avn for some (at least one) x. Then we have a copy of [1423] given
by [1(n)x(n − 1)], so this is impossible. If we insert n after but not
adjacent to n, we have [1 . . . (n− 1) . . . x . . . (n)], and we then have a
copy of [1324] given by [1(n − 1)x(n)], so this is impossible too. So
n− 1 and n must be adjacent, and we have precisely two ways for this
to happen. By induction, the proof is complete.

Future Work

•We have also proven results for avoidance sets for triples of cyclic
patterns.

•Other work includes examining cyclic shuffle compatibility and gener-
ating functions for cyclic permutation statistics.
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