Pattern Avoidance in Cyclic Permutations

Alexander Sietsema, James Schmidt

MICHIGAN STATE
Michigan State University
UNIVERSITY

Abstract

Pattern avoidance in permutations is a well-studied field of enumerative combinatorics. We will discuss the classical version for linear permutations and then introduce a recent variant for cyclic permutations. Finally, we will present our new results counting cyclic avoidance sets for pairs of length 4 patterns, and give an example of how those results arise from counting arguments.

Background

- Let S be a set with $\# S=n$. A permutation of S is a sequence $\pi=\pi_{1}, \pi_{2}, \ldots, \pi_{n}$ obtained by listing the elements of S in some order. We will use \mathfrak{S}_{n} to denote the set of permutations of $\{1,2, \ldots, n\}$. This permutation is of length n.
- A subsequence is a (not necessarily consecutive) sequence contained within a permutation. We say that $\pi \in \mathfrak{S}_{n}$ contains a copy of $\sigma \in \mathfrak{S}_{k}$ if there is a subsequence of length k in π with the same relative order as σ. On the other hand, we say that π avoids the pattern σ if π does not contain a copy of σ.
- Example: If $\pi=13254$ contains $\sigma=132$ as a pattern because the subsequence 154 has the same relative order as σ. We also say that π avoids the pattern 321 since it does not contain a decreasing subsequence of length 3

We can draw diagrams where the heights of each point is given by the permutation elements. A copy of 132 is bolded.

- We can also consider a permutation avoiding a set of patterns if it does not contain a copy of any pattern in the set. We denote the set of permutations of length n that avoid a set of patterns S as $\mathrm{Av}_{n}(S)$. This is called the avoidance set of S.
- Example: for $\pi \in \mathfrak{S}_{n}, \operatorname{Av}_{n}(\pi)=\mathfrak{S}_{n}-\{\pi\}$, since the only permutation with the same length as π that avoids π is π itself.
- Counting the number of permutations avoiding a given pattern (or set of patterns) is a common problem. We call two patterns or sets of patterns Wilf equivalent if their avoidance sets have the same cardinalities. This is denoted $\pi \equiv \pi^{\prime}$
- A special class of Wilf equivalences are the trivial Wilf equivalences, obtained by applying symmetries of the square to the diagram.
-Example: Applying vertical reflection to 132 gives us 231, so we get that $A v_{n}(132)=A v_{n}(231)$. For patterns in \mathfrak{S}_{3}, applying trivial equivalences like this yield two trivial equivalence classes. Direct counting yields a non-trivial equivalence between the classes. As such, all elements of \mathfrak{S}_{3} are Wilf equivalent.
\square

Our Problem

- We may also consider cyclic permutations, where we let the end of a permutation "wrap around" to the beginning. Accordingly, two permutations are considered the same if one is a rotation of another. We denote cyclic permutations with brackets.
- Example: The only two cyclic permutations of length 3 are [123] and [132], as every other permutation is a rotation of one of these.
- We can consider pattern avoidance in the same way as before
-Example: As a linear permutation, $\pi=13254$ avoided 321. If we consider $[\pi]$, however, it no longer does - $\pi \pi$] contains [541] (wrapping around) as a copy of [321].
- Since we may choose any rotation we like, we standardize to begin with 1 .
- There are only six cyclic permutations of length 4; Callan [1] counted the avoidance sets for these
- Our work is on counting the avoidance sets for all pairs of length 4 patterns.

Results

- There are 15 pairs of cyclic permutations of length 4. Applying trivial Wilf equivalences gives us 7 trivial equivalence classes.
- Example: Applying reversal (vertical reflection) to the pair $\{[1234],[1423]\}$ gives us $\{[4321],[3241]\}$, which after rotation to begin with 1 gives us $\{[1432],[1324]\}$. This gives us one such equivalence class.
- We next use counting arguments to determine the size of these classes. A few of the interesting results are:
$-\# \operatorname{Av}_{n}([1234],[1243])=2(n-2)$ for $n>2$.
$-\# \operatorname{Av}_{n}\left([1234,[1423])=1+\binom{n-1}{2}\right.$ for all n.
$-\# \operatorname{Av}_{n}\left([1324,[1423])=2^{n-2}\right.$ for $n>1$.
We demonstrate one such counting argument next, but also note that after counting we have 5 total equivalence classes (direct counting provides two nontrivial Wilf equivalences)

Example Counting Argument

We will now show that $\# \mathrm{Av}_{n}([1324],[1423])=2^{n-2}$ for $n>1$ as a demonstration of our methods. We proceed by induction. For the base case, we have just one permutation [12], which trivially avoids [1234], [1432]. Thus $\# \mathrm{Av}_{2}=1=2^{2-2}$. For the inductive step, we will assume that $\# A \mathrm{v}_{n-1}=2^{n-3}$ and show that every permutation in $A v_{n-1}$ gives us two permutations in $A v_{n}$, namely where n is inserted before and after $n-1$, and that no other permutations are possible. This implies that we have twice as many permutations in Av_{n} than Av_{n-1}, so $\# \mathrm{Av}_{n}=2\left(2^{n-3}\right)=2^{n-2}$ as desired

Example Proof (cont.)

First, we show that every permutation in Av_{n-1} corresponds to two permutations in $A \mathrm{v}_{n}$ by insertion before and after the element $n-1$. Let $[\pi]=[1 \ldots n \ldots]$ be in Av_{n-1}. If we insert n before $n-1$, then the new permutation is of the form $\left[\pi^{\prime}\right]=[1 \ldots(n)(n-1) \ldots]$. Since $[\pi]$ was in Av_{n-1} before insertion, if after insertion it isn't in Av_{n}, then n must be involved in the offending pattern copies. If $\left[\pi^{\prime}\right]$ had a copy of [1324], then if n is involved, it must be the 4 since it is greater than all elements. Since $n-1$ and n are adjacent in π^{\prime} but not [1324], $n-1$ cannot be the 3 . Then the copy replacing n with $n-1$ is in $[\pi]$, contradicting our assumption that $[\pi]$ was in Av_{n-1}. The same line of reasoning shows that π^{\prime} does not contain [1423], as well as that insertion of n after $n-1$ will still be in $A v_{n}$.

Example: A sample permutation in Av_{n-1}, and insertions before and after $n-1$. We see that both of these permutations are in $A v_{n}$.
To show that no other permutations are in Av_{n}, we will show that no other insertion of n will work. This follows from the fact that removing n from a permutation in $A v_{n}$ must result in a permutation in $A v_{n-1}$, so ev ery permutation in $A v_{n}$ must come from inserting n in some permutation in $A v_{n-1}$ Given this, assume that we have $[\pi] \in \mathrm{Av}_{n-1}$, but we insert n before but not adjacent to $n-1$ to get $\left[\pi^{\prime}\right]=[1 \ldots(n) \ldots x \ldots(n-1)]$ in Av_{n} for some (at least one) x. Then we have a copy of [1423] given by $[1(n) x(n-1)]$, so this is impossible. If we insert n after but not adjacent to n, we have $[1 \ldots(n-1) \ldots x \ldots(n)]$, and we then have a copy of [1324] given by $[1(n-1) x(n)]$, so this is impossible too. So $n-1$ and n must be adjacent, and we have precisely two ways for this to happen. By induction, the proof is complete.

Future Work

- We have also proven results for avoidance sets for triples of cyclic patterns.
- Other work includes examining cyclic shuffle compatibility and generating functions for cyclic permutation statistics.

Acknowledgements

We would like to thank Dr. Bruce Sagan, Quinn Minnich, Rachel Domagalski, and Jinting Liang, with whom we collaborated to find these results.

