

Abstract

Let D be a set of positive integers. The density of D is the maximum density of integral sequences in which the separation between any two terms is not in D. The kappa value of D is the parameter involved in the "lonely runner conjecture." The density and kappa value are known for $D = \{1, j, m(j+1) + 3\}$ where j is even and $1 \leq m \leq j-3$. We extend these results to $D = \{1, j, m(j+1)+l\}$ where $l \in \{5, 7\}$, j is even, and $1 \le m \le j - l$.

Background

Let D be a set of positive integers. A sequence S of non-negative integers is called a D-sequence if $|x - y| \notin D$ for any $x, y \in S$. Let S[n] denote $|S \cap \{0, 1, 2, ..., n\}|$. The **density of** S is defined by

$$\delta(S) = \lim_{n \to \infty} \frac{S[n]}{n+1}.$$

The **density of** D is defined by

$$\mu(D) = \sup\{\delta(S) : S \text{ is a } D \text{-sequence}\}.$$

For example, let $D = \{1, 3, 4\}$. We consider two possible *D*-sequences. $S_1: \bigcirc 1 \ 2 \ 3 \ 4 \ \bigcirc 5 \ 6 \ 7 \ 8 \ 9 \ (10) \ 11 \ 12 \ 13 \ 14 \ (15) \ 16 \ 17 \dots$ $S_2: \bigcirc 1 \ \bigcirc 3 \ 4 \ 5 \ 6 \ \bigcirc 7 \ 8 \ \bigcirc 9 \ 10 \ 11 \ 12 \ 13 \ \bigcirc 14 \ 15 \ \bigcirc 16 \ 17 \dots$

Let $||x||_s = \min\{x \pmod{s}, s - x \pmod{s}\}$. For some $t \in \mathbb{R}$, let $||tD||_s = \min\{||td||_s : d \in D\}$. The **kappa value** of D is defined by

$$\kappa(D) = \max\left\{\frac{||tD||_s}{s} : \gcd(s,t) = 1\right\}.$$

Known Results

- 1. For any set $D, \mu(D) \ge \kappa(D)$.
- 2. Haralambis' Lemma: Let D be a set of positive integers, and let $\alpha \in (0, 1]$. If for every D-sequence S with $0 \in S$ there exists a positive integer n such that $S[n]/(n+1) \leq \alpha$, then $\mu(D) \leq \alpha$.
- 3. Let $D = \{1, j, k\}$, where j is even, k = m(j+1) + 3, and $1 \le m \le j 3$. Then

$$\mu(D)=\kappa(D)=\frac{j(m+1)}{2(j+k)}.$$

DENSITY AND KAPPA VALUE OF INTEGRAL SEQUENCES WITH MISSING SEPARATIONS

Joyce Quon[†], Faculty Advisor: Dr. Daphne Liu[†] [†]Department of Mathematics, California State University, Los Angeles

Open Problem

What is the density and kappa value of $D = \{1, j, k\}$ where j is even, k = m(j+1) + l, and $l \in \{5,7\}?$

New Result

Let $D = \{1, j, k\}$ where j is even, $k = m(j+1) + l, l \in \{5, 7\}$, and $1 \le m \le j - l$. Then

$$\mu(D) \ge \kappa(D) \ge \frac{j(m+1)}{2(j+k)}.$$

If l = 5, then equality holds.

Algorithm to Calculate Kappa Value

Consider $D = \{1, 6, 12\}$. When D contains exactly 3 elements, the denominator of $\kappa(D)$ is the sum of two elements of D. We consider three cases: $d_1 = 7$, $d_2 = 13$, and $d_3 = 18$.

		$d_1 =$	= 7	
t	1	6	12	min
1	1	-1	-2	1
2	2	-2	3	2
3	3	-3	1	1
4	-3	3	-1	1

$d_2 = 13$				
t	1	6	12	min
1	1	6	-1	1
2	2	-1	-2	1
3	3	5	-3	3
4	4	-2	-4	2
5	5	-4	-5	4
6	6	-3	-6	3
7	-6	3	6	3

We compare $\frac{2}{7}$, $\frac{4}{13}$, and $\frac{6}{18}$ and determine the maximum value to be $\frac{6}{18}$. Thus, $\kappa(D) = \frac{6}{18}$. This method will generate the kappa value for any 3-element D-set.

Kappa Value Data for New Result

We compute the kappa value of $D = \{1, j, k\}$ where j is even and k = m(j+1) + 5. We show some data for $1 \leq m \leq 4$.

m	j	k	$\kappa(D)$
m = 1	2	8	1/3
	4	10	4/11
	6	12	6/18
	8	14	8/22
	10	16	10/26
m=2	2	11	1/3
	4	15	6/16
			•
	6	19	8/20
	6 8	19 23	8/20 12/31

m	j	k	$\kappa(D)$
m = 3	2	14	1/3
	4	20	8/21
	6	26	11/27
	8	32	16/40
	10	38	20/48
m = 4	2	17	1/3
	4	25	10/26
	6	33	14/31
	8	41	18/42
	10	49	25/59

(1)

(2)

(3)

6	12	min
6	-6	1
-6	6	2
0	0	0
6	-6	4
-6	6	5
0	0	0
6	6	6
6	6	6
0	0	0

Proof of New Result

Let $t = \frac{j(m+1)}{2} + (\frac{j}{2} - 1)$. Then (222 ± 1)

$$\begin{aligned} \dot{z} \cdot 1 &= \frac{j(m+1)}{2} + (\frac{j}{2} - 1), \\ \dot{z} \cdot j &= \frac{j}{2}(j+k) - \frac{j(m+1)}{2}, \\ \dot{z} \cdot k &= (\frac{mj+j}{2} - 1)(j+k) + \frac{j(m+1)}{2} \end{aligned}$$

We conclude that $||tD||_{j+k} = \frac{j(m+1)}{2}$ and

$$\mu(D) \geq \kappa(D) \geq \frac{j(m+1)}{2(j+k)}.$$

If l = 5, then we show that $\mu(D) \leq j(m+1)/2(j+k)$. Let S be a D-sequence with $0 \in S$. If $S[k] \leq mj/2 + 1$, then

$$\frac{S[k]}{k+1} \le \frac{j(m+1)}{2(j+k)}.$$

Therefore, the result follows from Haralambis' Lemma. If S[k] = mj/2 + 2, then we have that this case is impossible. Lastly, if S[k] =mj/2 + 3, then let $A_i = S \cap (\{0, ..., j\} + i(j + 1))$ for $0 \le i \le m - 1$. By assumption, $|A_i| = j/2$ for $0 \le i \le m - 1$. Therefore, let $A_i = \{0, 2, 4, ..., e_i - i \le m - 1\}$ $2, e_i + 1, e_i + 3, \dots, j - 1 \} + i(j + 1)$ for $0 \le i \le m - 1$ where e_i is even and $e_m \le e_{m-1} \le \dots \le e_0 \le j$. For all e_0 , we have that $S[j+k-1] \le j(m+1)/2$. The result follows from Haralambis' Lemma. Therefore,

$$\mu(D)=\kappa(D)=\frac{j(m+1)}{2(j+k)}.$$

Conjecture

Let $D = \{1, j, k\}$, where j is even, k = m(j+1) + 7, and $1 \le m \le j - 7$. Then

$$\mu(D) = \kappa(D) = \frac{j(m+1)}{2(j+k)}.$$

Acknowledgments

We thank the NASA Data Intensive Research and Education Center for STEM and CSU Preparing Undergraduates through Mentoring toward PhD's (Grant DMS-1916494).

References

- [1] D. Cantor, B. Gordon, Sequences of Integers with Missing Differences, J. Combin. Theory (A), 14 (1973), 281-287.
- [2] D. Liu, G. Robinson, Sequences of Integers with Three Missing Separations, Eur. J. Combin., 85 (2020).
- [3] N. M. Haralambis, Sets of Integers with Missing Differences, J. Combin. Theory (A), 23 (1977), 22-33.

(4)