Density and Kappa Value of Integral Sequences

with Missing Separations

Joyce Quont, Faculty Advisor: Dr. Daphne Liu ${ }^{\dagger}$
${ }^{\dagger}$ Department of Mathematics, California State University, Los Angeles

Abstract

Let D be a set of positive integers. The density of D is the maximum density of integral sequences in which the separation between any two terms is not in D. The kappa value of D is the parameter involved in the "lonely runner conjecture." The density and kappa value are known for $D=\{1, j, m(j+1)+3\}$ where j is even and $1 \leq m \leq j-3$. We extend these results to $D=\{1, j, m(j+1)+l\}$ where $l \in\{5,7\}$, j is even, and $1 \leq m \leq j-l$.

Background

Let D be a set of positive integers. A sequence S of non-negative integers is called a D-sequence if $|x-y| \notin D$ for any $x, y \in S$. Let $S[n]$ denote $|S \cap\{0,1,2, \ldots, n\}|$. The density of S is defined by

$$
\delta(S)=\lim _{n \rightarrow \infty} \frac{S[n]}{n+1} .
$$

The density of \boldsymbol{D} is defined by

$$
\begin{equation*}
\mu(D)=\sup \{\delta(S): \text { S is a } D \text {-sequence }\} . \tag{1}
\end{equation*}
$$

For example, let $D=\{1,3,4\}$. We consider two possible D-sequences

Let $\|x\|_{s}=\min \{x(\bmod s), s-x(\bmod s)\}$. For some $t \in \mathbb{R}$, let $\|t D\|_{s}=\min \left\{\|t d\|_{s}: d \in D\right\}$ The kappa value of D is defined by

$$
\begin{equation*}
\kappa(D)=\max \left\{\frac{\|t D\|_{s}}{s}: \operatorname{gcd}(s, t)=1\right\} . \tag{2}
\end{equation*}
$$

Known Results

1. For any set $D, \mu(D) \geq \kappa(D)$.
2. Haralambis' Lemma: Let D be a set of positive integers, and let $\alpha \in(0,1]$. If for every D-sequence S with $0 \in S$ there exists a positive integer n such that $S[n] /(n+1) \leq \alpha$, then $\mu(D) \leq \alpha$
3. Let $D=\{1, j, k\}$, where j is even, $k=m(j+1)+3$, and $1 \leq m \leq j-3$. Then

$$
\mu(D)=\kappa(D)=\frac{j(m+1)}{2(j+k)} .
$$

Open Problem

What is the density and kappa value of $D=\{1, j, k\}$ where j is even, $k=m(j+1)+l$, and $l \in\{5,7\}$?

New Result

Let $D=\{1, j, k\}$ where j is even, $k=m(j+1)+l, l \in\{5,7\}$, and $1 \leq m \leq j-l$. Then

$$
\begin{equation*}
\mu(D) \geq \kappa(D) \geq \frac{j(m+1)}{2(j+k)} . \tag{3}
\end{equation*}
$$

If $l=5$, then equality holds

Algorithm to Calculate Kappa Value

Consider $D=\{1,6,12\}$. When D contains exactly 3 elements, the denominator of $\kappa(D)$ is the sum of two elements of D. We consider three cases: $d_{1}=7, d_{2}=13$, and $d_{3}=18$.

We compare $\frac{2}{7}, \frac{4}{13}$, and $\frac{6}{18}$ and determine the maximum value to be $\frac{6}{18}$. Thus, $\kappa(D)=\frac{6}{18}$. This method will generate the kappa value for any 3 -element D-set

Kappa Value Data for New Result
We compute the kappa value of $D=\{1, j, k\}$ where j is even and $k=m(j+1)+5$. We show some data for $1 \leq m \leq 4$.

m	j	k	$\kappa(D)$	m	j	k	$\kappa(D)$
$m=1$	2	8	1/3	$m=3$	2	14	1/3
	4	10	4/11		4	20	8/21
	6	12	6/18		6	26	11/27
	8	14	8/22		8	32	16/40
	10	16	10/26		10	38	20/48
$m=2$	2	11	1/3	$m=4$	2	17	1/3
	4	15	6/16		4	25	10/26
	6	19	8/20		6	33	14/31
	8	23	12/31		8	41	18/42
	10	27	15/37		10	49	25/59

Proof of New Result

$$
\mu(D) \geq \kappa(D) \geq \frac{j(m+1)}{2(j+k)} .
$$

If $l=5$, then we show that $\mu(D) \leq j(m+1) / 2(j+k)$. Let S be a D-sequence with $0 \in S$. If $S[k] \leq m j / 2+1$, then

$$
\frac{S[k]}{k+1} \leq \frac{j(m+1)}{2(j+k)} .
$$

Therefore, the result follows from Haralambis' Lemma.
If $S[k]=m j / 2+2$, then we have that this case is impossible. Lastly, if $S[k]=$ $m j / 2+3$, then let $A_{i}=S \cap(\{0, \ldots, j\}+i(j+1))$ for $0 \leq i \leq m-1$. By assumption, $\left|A_{i}\right|=j / 2$ for $0 \leq i \leq m-1$. Therefore, let $\overline{A_{i}}=\left\{0,2,4, \ldots, e_{i}\right.$ $\left.2, e_{i}+1, e_{i}+3, \ldots, j-1\right\}+i(j+1)$ for $0 \leq i \leq m-1$ where e_{i} is even and $e_{m} \leq e_{m-1} \leq \ldots \leq e_{0} \leq j$. For all e_{0}, we have that $S[j+k-1] \leq j(m+1) / 2$. The result follows from Haralambis' Lemma. Therefore,

$$
\mu(D)=\kappa(D)=\frac{j(m+1)}{2(j+k)} .
$$

Conjecture

Let $D=\{1, j, k\}$, where j is even, $k=m(j+1)+7$, and $1 \leq m \leq j-7$. Then

$$
\begin{equation*}
\mu(D)=\kappa(D)=\frac{j(m+1)}{2(j+k)} . \tag{4}
\end{equation*}
$$

Acknowledgments

We thank the NASA Data Intensive Research and Education Center for STEM and CSU Preparing Udergraduates through Mentoring toward PhD's (Grant DMS 1916494).

References

[^0]
[^0]: . Cantor, B. Gorton, Sequences of Integers with Missing Differences, J. Combin. Mheory (A), 14 (1973), 281-288. . Liu, G. Robimson, Sequences of Integers with Three Missing Separations, Eur. J. Combin, 85 (2020) 3] N. M. Haralambis, Sets of Integers with Missing Differencee, J. Combin. Theory (A), 23 (1977), 22-33.

