An Addition Table with Interesting Properties

Introduction

0112345
12345
23

$\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 4 & 5 & 7 & \end{array}$
345678910
$\begin{array}{llllllll}4 & 6 & 7 & 8 & 9 & 1011 \\ 5 & 7 & 8 & 9 & 10 & 11 & 12\end{array}$
678910111213
7891011121314
Let's pretend it goes on to infinity. Is it possible to delete certain rows and columns so that each nonnegative integer appears exactly once? Yes. We can delete all the rows except the first or all the columns except the first, and each nonnegative integer appears exactly once.
$01234567 \cdots$ or

But these solutions are trivial. Is there a way to do it that leaves infinitely many rows and infinitely many

Solving the Puzzle

Let's solve this problem one nonnegative integer at a time. We need a 0 in the final table, so we can't delete Let's solve this problem one nonnegative integer at a time. We need a 0 in the final table, so we can't delete
the first row or column. There are two 1's in the table. One of them must be deleted, so let's delete the 1 i the first column. We can't delete it by deleting the first column, so we have to delete the second row:

	34			
234		67	7	
345	6	78	89	
456	78	89	910	
567	8	91	101	
678	9			

Now there are two 2's. We can delete the third column or the third row. Let's choose the third column:

01	\bullet	3	4	5	6
	7				

$\begin{array}{lllllllll}\bullet \bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\ 23 & 3 & 5 & 6 & 7 & 8 & 9 \\ 3 & 4 & \bullet & 6 & 7 & 8 & 9 & 10 \\ 4 & 5 & - & 7 & 8 & 9 & 10 & 11\end{array}$
$\begin{array}{llll}4 \\ 5 & 6 \cdot 89101112 \\ 6 & 8 & 9 & 10\end{array}$
$67 \bullet 910111213$
$78 \cdot 1011121314$
We can't delete the 3 in the third row and the second column because deleting the third row would delete the only 2 left, and deleting the second column would delete the only 1 left. So this 3 must be in the fin table, and we have to delete the other two 3 s , which means deleting the fourth row and third column

| 0 | 1 | \bullet | 4 | 5 | 6 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\bullet \bullet$ | \bullet | \cdot | \bullet | \bullet | \bullet | |
| 2 | 3 | \ddots | 6 | 7 | 8 | 9 |
| \bullet | \bullet | \cdot | \cdot | \cdot | \bullet | |
| 4 | 5 | \bullet | 8 | 9 | 10 | 11 |
| 5 | 6 | \ddots | 9 | 10 | 11 | 12 |
| 6 | 7 | \bullet | 10 | 11 | 12 | 13 |
| 7 | 8 | \bullet | 11 | 12 | 13 | 14 |

Notice that the numbers $0,1,2$, and 3 are in the top-left 2 -by- 2 square, and $4,5,6$, and 7 are in the square to its right. Let's keep that suquare for the final table, and delete all the other 4 s 's, 5 s , 6 's, and 7 s s. There are
a lot of red dots now, so we'll delete them and add in an extra row:

$$
\begin{array}{ll|ll}
\hline 0 & 1 & 4 & 5 \\
2 & 3 & 6 & 7 \\
\hline 8 & 9 & 12 & 13
\end{array}
$$

We see a partial $8,9,10,11$ square on the bottom edge. We also see a partial $12,13,14,15$ square. Notice that the four 2 -by-2 squares are in a 2 -by-2 square in the same order (top-left, top-right, bottom-left, bottom-right)!
Look at the final table (in the next block of the poster). The 2 -by- 2 squares $0-3,4-7,8-11$, and $12-15$ are arranged in the $4 y-4$ sqare 48 in the same pattern as $0,1,2$, and 3 in the 2 -by- 2 square $0-3$. The 4 -by

Note: This is not the only addition table with infinitely many rows and columns such that every nonnegative integer appears exactly once. We will call the property that every nonnegative integer appears exactly once
"Property $\mathbf{1}$ "

The Final Table (Top-Left 16 by 16)

		$\left.\begin{array}{ll} 16 & 17 \\ 18 & 19 \end{array} \right\rvert\,$	$\left\|\begin{array}{ll} 20 & 21 \\ 22 & 23 \end{array}\right\|$	$\left\|\begin{array}{ll} 64 & 65 \\ 66 & 67 \end{array}\right\|$		$\begin{array}{ll} 80 & 81 \\ 82 & 80 \end{array}$	
89	1213	2425	2829		7677	8889	92
10	1415	$26 \quad 27$	3031	74	7879	9091	9495
3233	3637	4849	5253	9697	100101	112	1116
3435	3839	5051	5455	9899	102103	114	115 118
4041	4445	5657	6061	10410	108	120	124
4243	4647	5859	6263	106107	110111	122123	126
12	1321	144145	148149	192	196197	20	
130131	134135	146147	150151	194195	198199	210	
136137	140141	152153	156157	200201	204	21621	
138139	142143	154155	158159	202203		218219	
160161	164165	176177	180181	22422	228	240241	
162163	166167	178179	182183	226227	230231	242243	
168169	172173	184185	188189	232	236	248	
		186	190		238239		

Figure 1: The final table

Properties of the Table

Let a_{n} be the first row sequence of the table (so $a_{0}=0, a_{1}=1, a_{2}=4, a_{3}=5$, and so on), and let b_{n} be he first column sequence. Since the table is an addition table, the entry in row i and column j is $b_{n}=2 a_{n}$ - $a_{2 n}=4 a_{n}$

- $a_{2 n+1}=4 a_{n}$
- $a_{2^{n}=4^{n}}$
$a_{2^{n}-1}=\left(4^{n}-1\right) / 3$
If $n=2^{k} q+r$ where $r<2^{k}$ then $a_{n}=4^{k} a_{q}+a_{r}$. (Most of the properties above this one are special cases of this one.)
- All nonnegative integers n can be uniquely expressed as $2 a_{i}+a_{j}$ for some nonnegative integers i and j
(This proves that every number appears exactly once in the table.)
The differences of $a, \Delta a_{n}$, are equal to

$$
\Delta a_{n}=a_{n+1}-a_{n}=\frac{2 \cdot 4^{E_{2}(n+1)}+1}{3},
$$

where $E_{2}(n+1)$ is the exponent of 2 in the prime factorization of $n+$
The preceding property implies that

$$
a_{n}=\frac{1}{3}\left(n+2 \sum_{k=1}^{n} 4^{E_{2}(k)}\right) .
$$

- The sum of a_{k} from $k=0$ to $2^{n}-1$ is

$$
\sum_{k=0}^{2^{n}-1} a_{k}=\frac{8^{n}-2^{n}}{6}=\binom{2^{n}+1}{3} .
$$

How to Calculate the First Row

$$
a_{5}=\frac{1}{3}\left(5+2 \sum_{k=1}^{5} 4^{E_{2}(k)}\right)=\frac{1}{3}\left(5+2\left(4^{0}+4^{1}+4^{0}+4^{2}+4^{0}\right)\right)=\frac{1}{3}(5+2 \cdot 23)=17,
$$

which is correct. But this involves calculating $E_{2}(k)$ for all k between 1 and n. Do we have to do this, or is there a faster way to calculate a_{n} ? There is a faster way, and if we wrote num
Here is the sequence a_{n} written in binary

| n (binary) | 0 | 1 | 10 | 11 | 100 | 101 | 110 | 111 | 1000 | 1001 | 1010 | 1011 | \cdots |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | The pattern is even more obvious if we look at n in binary and a_{n} in quaternary (base 4):

n (binary) 0110111001011101111000100110101011
a_{n} (quaternary) 0110111001011101111000100110101011
We see that to calculate a_{n}, we can find the digits of n in binary and interpret them as quaternary digits. Most of the properties listed in the previous block can be proved pretty easily using this fact. Also, we see that a number is equal to a_{n} for some n if and only if it only has 0 's and 1's in its quaternary representation This method of calculating a_{n} is very easy for computers to do because computers store numbers in binary

$$
d_{k}(n)=\left\lfloor\frac{n}{2^{k}}\right\rfloor \bmod 2,
$$

so we have another formula for a
(Formula 1) $a_{n}=\sum 4^{k} d_{k}(n)=\sum_{k} 4^{k}\left(\left\lfloor\frac{n}{2^{k}}\right\rfloor \bmod 2\right)$

Other Addition Tables

- The reflection about the main diagonal of any table with Property 1 also has Property
- For each integer $c \geq 2$, define

$$
a_{n}^{(\text {base } c)}=\sum_{k} c^{2 k}\left(\left\lfloor\frac{n}{c^{k}}\right\rfloor \bmod c\right) .
$$

The table with (i, j) th entry $c a_{i}^{(\text {base } c)}+a_{j}^{(\text {base } c)}$ has Property 1 . A lot of properties listed in the
"Properties of the Table" block can be extended to $a^{(\text {base } c)}$). (When $c=2$ this becomes the table in Figure 1. The number $a_{n}^{(\text {base } c)}$ is the digits of n in base c interpreted as digits in base c^{2}.)
There are more than just these
the table in Figure 1 is a two-dimensional array. What about higher-dimensional addition tables? For eac pair of integers (c, d) both at least 2 , define

$$
\text { (Formula 2) } a_{n}^{(\text {base } c, \operatorname{dim} d)}=\sum_{k} c^{d k}\left(\left\lfloor\frac{n}{c^{k}}\right\rfloor \bmod c\right)
$$

The d-dimensional table with $\mathbf{n}=\left(n_{1}, n_{2}, \ldots, n_{d}\right)$-th entry

$$
\sum_{j=1}^{d} c^{d-j} a_{n_{j}}^{(\text {base } c, \operatorname{dim} d)}
$$

as the d-dimensional version of Property 1. (The number $a_{n}^{(\text {base } c, \text { dim } d)}$ is the digits of n in base interpreted as digits in base c^{d}.

The Addition Table in \mathbb{R}^{2}

bers. Let $g: \mathbb{R}_{+}^{d} \rightarrow \mathbb{R}_{+}$. We call g a real number ddition table in d dimensions if for all $\mathbf{x} \in \mathbb{R}^{d}$

$$
g(\mathbf{x})=\sum_{j=1}^{d} g\left(C_{j} \mathbf{x}\right),
$$

Where C_{j} is the matrix with (j, j) th entry 1 and all the other entries 0 . We can extend Property 1 to real number addition tables by saying g has Property 1 if g is bijective.
Can we define a_{n} if n is any real number? Yes. We can use Formula 1 from the "How to Calculate the First Row" block. Since this is a function from \mathbb{R} to \mathbb{R}, we will call it $f(x)$ instead of a_{n}. Here are some properties f :

- Every nonnegative real number can be written uniquely as $2 f(x)+f(y)$ for some x and y. Therefore, the function $g(x, y)=2 f(x)+f(y)$ is a real number addition table in two dimensions.
- Let q be a nonnegative integer, k be a (possibly negative) integer, and r be a nonnegative real numbe less than 2^{k}. Then, $f\left(2^{k} q+r\right)=4^{k} f(q)+f(r)$.
- The range of f has measure 0 but is uncountable. It is very similar to the Cantor se
- The function f is continuous at a real number $x>0$ if and only if $2^{k} x \notin \mathbb{N}$ for any integer k. (So f is
continuous at all nonterminating binary numbers, and discontinuous at all terminating binary numbers

Since the set of discontinuities of f has measure 0 , we can integrate f. Let $n \in \mathbb{Z}$. The integral of f from 0 to 2^{n} is

$$
\int_{0}^{2^{n}} f(x) d x=\frac{8^{n}}{6} .
$$

- The integral of f from 0 to a rational number of the form $2^{t}\left(2^{v}-1\right)$ where $t \in \mathbb{Z}$ and $v \in \mathbb{N}$ is

$$
\int_{0}^{2^{2} /\left(2^{v}-1\right)} f(x) d x=\frac{8^{t}}{8^{v}-1}\left(\frac{1}{2^{v}-1}+\frac{1}{6}\right)
$$

If $v=1$ then this reduces to the preceding property
Let $n \in \mathbb{N}$. If we know the integral of f from 0 to n, then we can find the integral of from 0 to a rational number of the form $2^{t} n /\left(2^{v}-1\right)$, where $t \in \mathbb{Z}$ and $v \in \mathbb{N}$:

$$
\int_{0}^{\left.2^{t_{n}} / 2^{v}-1\right)} f(x) d x=\frac{8^{t}}{8^{v}-1}\left(\frac{1}{2^{v}-1}+\int_{0}^{n} f(x) d x\right) .
$$

If $n=1$ then this reduces to the preceding property
The third property in this list implies that

$$
\int_{2^{k} q}^{2^{k_{q+r}}} f(x) d x=4^{k} r f(q)+\int_{0}^{r} f(x) d x,
$$

where q is a nonnegative integer, $k \in \mathbb{Z}$, and r is a nonnegative real number less than 2
For all nonnegative integers n,

$$
\int_{0}^{n} f(x) d x=\frac{n}{6}+\sum_{i=0}^{n-1} f(i) .
$$

- For all $x \in \mathbb{R}_{+}$and $k \in \mathbb{Z}$,

$$
f\left(x+2^{k}\right)-f(x)=4^{k} \cdot \frac{2 \cdot 4^{E_{2}}\left(\left[2^{-k} x\right]+1\right)+1}{3} .
$$

Let $x=n / 2^{k}$ be a point at which f is discontinuous, where n is odd and $k \in \mathbb{Z}$. Then, the right limit of f at x is $f(x)$ and the left limit is $f(x)-2 \cdot 4^{-k} / 3$.
We can use Formula 2 from the "Other Addition Tables" block to define $f^{(\text {base } c, ~ d i m ~ d)}(x)$ to get
infinitely many real number addition tables in each dimension which have Property 1.

