The aging model might indicate that the population of a particular type of mine, in a given country, could be expected to have become wholly non-functional after a certain passage of time. Figure 8 illustrates a situation in which failure involves two components. Component A is a component, the failure of which results in the neutralization of the mine. Component B causes disarmament when it fails. The overall failure of the mine occurs on the basis of the first past the post principle—that is, whatever component fails first renders the mine non-functional. However, if that failure corresponds to age-neutralization then it could be argued that the device remains potentially hazardous. Only when a population of mines can be expected to have become fully age-disarmed can it be said that any hazard has finally, and permanently, disappeared.

Such questions present important challenges for policy makers as well as for field planners and practitioners. The operator clearing mines may eventually take a view that the hazard associated with clearance of a particular type of mine has reached the point where it is effectively zero. It may be reasonable to believe that end-users of land are safe from the threat of that type of mine. At the same time policy makers may feel that compliance with international agreements and conventions demand the removal of the devices, even if, arguably, they are no longer mines.

These may seem like academic points for consideration by some future generation of decision-makers. However, these are pressing issues since some landmine types in some countries are already close to the point where they could be considered ‘non-hazardous’; in some cases, it could be argued that they no longer constitute landmines within the accepted definitions.

4. **User tools**

The modeling process gave rise to two tools for users. These are:

- **Vulnerability index tables**