3. Upon corrosion, the shape of the firing pin changes from a longer, conical shape to a blunter, shorter shape. The most severely corroded firing pin has no Fe metal remaining and is a mass of Fe oxide material (rust), with no point remaining.

4. Most pins showed minimal loss of Fe metal in cross-section. This suggests that the protective metal coating on the firing pins is often effective at protecting the pin from degradation. Once the coating is breached, however, a water-rich environment will rapidly degrade the pin, which may potentially render the landmine unable to function as intended due to the blunter shape and reduced strength of the pin.

5. The firing pin is unlikely to be the first component to fail in the Type 72, M14, or M19 landmines since it is housed internally, but it may be a good indicator that a mine is unlikely to function as intended, and may be able to initiate any longer at all. Almost all firing pins from deployed landmines with show corrosion on the surface. The shape of the firing pin is one indicator of how far corrosion had progressed; quickly slicing or cutting the pin open will reveal how much original metal remains. If multiple landmines recovered from a particular area indicate severe corrosion of the firing pins, and there is evidence of exhaustive interaction with water, it is likely that most landmines in the area