SCAMP Anti-personnel Mine Roller Performance Testing

Humanistic Robotics Inc, a U.S.-based designer and manufacturer of mechanical demining machines and robotics-support equipment, hypothesized that a well-designed roller utilized in the appropriate environments would be an important part of the mechanical demining toolkit. To test this hypothesis, HRI designed, developed and tested a novel anti-personnel mine roller—the Specialized Compact Automated Mechanical Clearance Platform Roller. This article highlights the SCAMP Roller’s unique design features, describes two testing events performed to evaluate effectiveness and discusses the test findings.

The use of mechanical demining equipment has greatly benefited humanitarian-demining operations worldwide. One machine type, the mine roller, has several key advantages when compared to other mechanical demining equipment. Because rollers are simple to operate, easy to maintain and have few consumable parts, they have low initial costs and operating expenses. Despite their advantages in humanitarian-demining operations, rollers are not as widely used as other mechanical equipment, such as fluids and rollers. Because roller testing is, to date, either ad hoc or limited mostly to surface-buried mines, the capabilities and limitations of rollers are not widely known. This has led to a generally held belief in the humanitarian community that roller performance is suboptimal, consequently, roller development, testing and use has remained stagnant and limited.

Because of the advantages mine rollers offer and the variety of conditions in which demining operations occur (many of which are appropriate for rollers), HRI developed a novel AP mine roller—the Specialized Compact Automated Mechanical Clearance Platform Roller. As part of the development process, HRI studied existing mine rollers and re-searched the key characteristics governing mine-roller effectiveness. To properly evaluate the SCAMP Roller’s clearance performance, a set of formal tests were conducted at the Keweenaw Research Center (KRC) near Calumet, Michigan and the Swedish Environmental and Demining Centre (SWEDEC) near Skojö, Sweden. The key parameters evaluated were mine type, soil conditions, compaction level above and around the mine, and roller speed.

SCAMP Roller Description

Roller systems detonate landmines by applying enough force to the ground to trigger the mine. To be an effective tool, a roller must ensure that this force is applied evenly across its full width and is always above a predetermined threshold that is dependent on mine type, depth and ground conditions. To maintain an evenly distributed threshold ground force, the SCAMP Roller has a variable ballast system fixed above a set of independently suspended roller wheels. Each suspension element uses a purpose-built coil spring with a starting force and spring constant specifically tailored to provide relatively constant ground force through each roller wheel’s vertical travel range. This ensures a minimum ground force threshold that is maintained for each roller wheel during all operations. The roller wheels themselves are aggressively textured “paddle-wheel” type rollers that effectively transmit force to the ground while maximizing blast ventilation. The roller wheel width, paddle geometry and contact area ensure that force is transmitted to the smallest AP mine trigger mechanisms. The roller wheels are arranged in two rows with a specifically set overlap between the front and rear roller wheels to ensure that the ground-force profile is constant across the roller’s width. The modular, bolted construction of the SCAMP Roller frame also provides a level of flexibility in applying the tool to different mined environments. The roller wheel and/or target ground force can be set to best suit the mission based on use observations of mine type, soil conditions, mine depth, etc.

Materials and Methods

During the clearance performance testing at KRC and SWEDEC, the SCAMP Roller was driven at 1.7, 4.6, 7.7 and 15.0 km/hr over a number of test mines (Type 72A, PMN-1, PMN-2 and M/49) burst at multiple depths (surface, 2.5, 5.0, 7.5 and 10.0 cm). Multiple soil conditions (topsoil, gravel and silt/gravel max), as defined by the European Committee for Standardization (CEN) Workshop Agreement 15044:2004 were tested. For the topsoil and silt/gravel mine conditions, the compaction level of the soil surrounding each mine was varied.

Test Procedure

A test lane was set aside in each soil condition by marking the outside edges and centerline. Each lane was conditioned by tilling the soil, adding moisture if necessary, and compacting until the desired level was achieved. The lane was divided into equal sections along its length—one section for each test mine. The mines were buried in the lane at the desired depth, and if they were placed below surface level, they were covered with overburden. The mine’s depth was measured from the top of the pressure plate to ground level. If required, the soil above and around the mine was then compacted to the desired level. During each test run, a prime mover pushed the roller down the test lane at a predetermined constant speed. After the roller was clear of the lane, the mine detonation records were recorded. If one-time test mines were used, they were carefully dug up and inspected to check detonation status. The test lane was then reconditioned prior to reburying any of the test mines.

KRC Testing Effort

Test Equipment. A 2-meters wide version of the SCAMP Roller pushed by a Bobcat T-250 skid steer loader was utilized for the major- ity of testing. For the high-speed testing, a high-mobility multipurpose wheeled vehicle prime mover was utilized.

Mine-emplacement technique. During the development of the SCAMP Roller, it became clear that the compaction level of the soil surrounding a mine had a significant effect on the performance of mechanical demining machines. The soil above and around the mine can be either loosely packed (simulating a recent emplacement), hard compacted (simulating a legacy condition where a mine was left in the ground for a long period of time) or something in between (see Figure 7 on page 78). The compaction level is particularly important when evaluating roller performance because roller mine neutralization is based on transferring force/deflection to a mine pressure plate through the soil. To simulate recent emplacement, mines were buried in accordance with the mine-emplacement guidelines in the U.S. Army’s FM 20–32 Field Manual. To simulate legacy condition, the test mines were buried in large holes (2–3 times the mine body diameter), and the soil above and around the mine was aggressively compacted until the compensation level matched the rest of the test lane.

Tests Points:

- Gravel lane: 4 different speeds (1.7, 4.6, 7.7 and 15.0 km/hr) and 2 depths (2.5 and 5.0 cm)
- Topsoil lane: 3 different speeds (1.7, 7.7 and 15.0 cm/krh), 3 depths (5.0, 7.5 and 10.0 cm) and 2 mine compaction levels (recent and legacy)

Test mines. Inert reproductions of the Chinese Type 72A, Russian PMN-1 and PMN-2 were utilized for testing. The Type 72A and PMN-1 contain internal trigger mechanisms that change state when a “detona- tion” occurs; they needed resetting after each test run. KRC provided the PMN-2 simulant (SIM) test mines. The SIMs measure pressure plate de- flection in real time, which allows for multiple test runs without needing to reset targets or recondition the test lane.

Conditions. One of the main goals of performance testing is de- termining how a machine will perform in real-world environments. Since mines are found in a variety of conditions (different soil types and surrounding compaction level), testing needs to account for this. To accomplish this, SCAMP Roller testing was conducted in various repre- sentative soils, and the compaction level above and around the mine was varied to simulate both recently emplaced and legacy mine conditions.

Soil types. Three different test lanes, with dimensions 4.48 meters wide by 35 meters long, were utilized, each containing a different type of soil. The soil types were based on the standard test soils described in the CEN Workshop Agreement 15044:2004. “The soils used were screened topsoil (similar consistency to planting soil), silt/gravel mix (a lo-moisture, silt-gravel soil) and 22A road gravel (common gravel used for road construction).
Results are analyzed for each mine type in the following categories:

- Performance versus soil type and mine depth
- Performance versus speed
- Performance versus mine-emplacement technique

Clearance Performance—Variable Soil Conditions [KRC]. Table 1 shows clearance-performance results for gravel-lane testing. All data from the PMN-2 SIMs indicated successful triggering at the 3.0 cm and 7.5 cm depths (a total of 336 test mines). The same was true for the PMN-1 test mines (a total of 45). For the Type 72As, 34 of 37 targets were triggered at the 5.0 cm depth, while 12 of 12 were triggered at the 7.5 cm depth.

For the topsoil lane the results were similar (Table 2). All data from the PMN-2 SIMs indicated successful triggering at each depth (5.0, 7.5 and 10.0 cm). A total of 235 PMN-2 SIMs were tested in this lane. All 23 PMN-1 test mines were triggered at the 5.0 and 7.5 cm depths, but only 3 of 4 were triggered at the 10.0 cm depth. With the Type 72As, all test mines were triggered at each depth (5.0, 7.5 and 10.0 cm). A total of 32 Type 72A test mines were used in the topsoil lane.

In the silt/gravel mix lane (see Table 3), all PMN-2 SIM data indicated successful triggering at each depth (5.0, 7.5 and 10.0 cm). A total of 289 test mines were used. For the PMN-1s, all 27 mines were triggered. For the Type 72As, all test mines at the 5.0 and 7.5 cm depths were triggered, but only 4 of 5 test mines were triggered at the 10.0 cm depth.

When comparing average PMN-2 SIM pressure-plate deflection at different depths for topsoil and silt/gravel mix conditions (see Table 4), the data shows that deflection decreases as the depth increases.

To summarize, the rollers triggered 100% of the PMN-2 SIMs over all conditions (gravel, topsoil and silt/gravel mix) and depths (5.0, 7.5 and 10.0 cm) for a total of 877 test mines. The roller triggered 100 of 101 PMN-1 test mines (99%) over all conditions and depths with one mine at a depth of 10.0 cm in the topsoil lane not triggered. For the Type 72As, the roller triggered 110 of 114 test mines (96%) over all conditions and depths. The roller failed to trigger three test mines at 5.0 cm depth in the gravel lane, and one test mine buried at 10.0 cm in the silt/gravel mix lane.

Clearance Performance—Surface-Buried Mines [SWEDEC]. During the testing at SWEDEC, the roller’s clearance performance was evaluated against surface-buried M/49 mine simulates with live fuses. As shown in Table 5, in the gravel lane, the roller detonated 48 of 50 test mines. In the topsoil lane, it detonated 50 of 50 test mines. Roller Speed Effects [KRC]. Clearance performance of the roller was measured at multiple speeds (1.7, 7.7 and 15.0 km/hr) in the gravel and topsoil lanes with the test mine depth held constant at 5.0 cm. In the gravel lane (Table 6 on page 78), test mine trigger percentage was lower at the higher speed for the PMN-2 SIMs (100 triggered out of 110 versus 165 out of 165 at the slower speed) and the Type 72As (8 of 9 triggered versus 12 of 12 at the slower speed). In the topsoil lane (Table 7 on page 78), the results were similar with fewer PMN-2 SIMs and Type 72As triggered at the faster speed. For the PMN-2 SIMs, 88 of 90 test mines were triggered at the faster speed, whereas 165 of 170 were triggered at the slower speed. For the Type 72As, 91 of 110 test mines were triggered at the faster speed, and 21 of 21 test mines were triggered at the slow speed.

As indicated in Table 8 on page 78, in the gravel and topsoil lanes, the average PMN-2 pressure-plate deflection decreases as roller speed increases.

Mine-Emplacement Effects [KRC]. In addition to clearance performance, the effect of mine-emplacement technique was also evaluated during the KRC testing effort. Because the PMN-2 SIMs provided continuous output of pressure-plate deflection, it allowed for multiple roller passes at each test condition.

Image 11 on page 78 shows the average PMN-2 SIM pressure-plate deflection for test mines in topsoil and silt/gravel mix at a depth of 5.0 cm versus roller pass. This shows that during the initial pass, when the condition is a true recent emplacement, the deflection is greatest. Over the first four roller passes the average deflection decreases by 90% and then levels off for the last four roller passes.

To compare a fresh “recent emplacement” and a heavily compacted “legacy emplacement,” additional testing was performed at 7.5 and 10.0 cm mine depth in the topsoil and silt/gravel mix lane.
though the Type 72A and the M/49s are difficult mines to trigger, the data shows that across all depths and soil conditions the SCAMP Roller triggers these mines 97% of the time, thereby demonstrating its precise coverage and ability to transfer high forces deep into the ground. One clear trend is that as mine depth increases, force transfer and average pressure-plate deflection decreases. Table 4 on page 77 clearly shows where the PMN-2 pressure-plate deflection is noticeably lower at the deeper test-mine depths. Further testing in other conditions and at increased mine depths would round out the roller’s performance specifications.

Speed effects. The majority of testing was performed with the roller speed at or below the nominal 7.7 km/hr. In practice, one would expect the roller to be operated well below this nominal speed. It was desirable to conduct testing at the highest speed where good performance was repeatable to allow for the calculation of a theoretical maximum efficiency and to compare performance of other mechanical demolition equipment. 

The SCAMP Roller development and testing was conducted as part of a contract with the U.S. Army Armatrons Research, Development, and Engineering Center. Special thanks to all involved in the testing efforts: Geoff Goadley and everyone at Michigan Tech KRC, Patrik Blomander, Jokin Etxebarria and Curt Larsen from SWEDEC, Rich Vanaman and his team from the ARDEC, and Pehr Lodhammar from the Geneva International Centre for Humanitarian Demining. Thanks also to Samuel Reeves, Josh Koplin and Justin Dodd from HRI.

Table 9. Clearance performance versus mine-emplacement technique.

<table>
<thead>
<tr>
<th>Soil Type</th>
<th>Emplacement</th>
<th>Deflection (cm)</th>
<th>Deflection (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topsoil</td>
<td>Recent</td>
<td>0.088</td>
<td>0.080</td>
</tr>
<tr>
<td>Legacy</td>
<td></td>
<td>0.039</td>
<td>0.022</td>
</tr>
<tr>
<td>Silt/Gravel Mix</td>
<td>Recent</td>
<td>0.063</td>
<td>0.071</td>
</tr>
<tr>
<td>Legacy</td>
<td></td>
<td>0.047</td>
<td>0.051</td>
</tr>
</tbody>
</table>

The SCAMP Roller design and subsequent testing efforts have shown that a well-designed roller used in the appropriate environments can consistently detonate recently and legacy-emplaced simulated mines up to a depth of 10.0 cm. If proper evaluation of roller-clearance effectiveness is performed (formal testing that includes legacy mine emplacement), then data can and should be compared with performance of other mechanical demolition equipment. See endnote page 82.

Clearing Cluster Bombs on the Ho Chi Minh Trail Video Wins CNN Award

Erik de Brun is a Principal Engineer and Co-founder of Ripple Design. He is involved in the design, development, and manufacturing of mechanical demolition equipment as well as the management of demolition operations. Ripple Design served as consultants to HRI in the testing of the SCAMP Roller. Prior to founding Ripple Design, de Brun worked on the development and testing of ground- and air-borne military systems. He holds an M.S. in mechanical engineering from the University of Pennsylvania and a B.S. in mechanical and aerospace engineering from Princeton University.

Erik de Brun: Principal Engineer and Co-founder Ripple Design 444 N. 4th Street Philadelphia, PA 19123 U.S.A. Tel: +1 267 872 6788 E-mail: erik.debrun@rippledesign.com Web site: http://www.rippledesign.com/index.php

CNN announced the video Clearing Cluster Bombs on the Ho Chi Minh Trail as winner of the CNN Report Community Choice Award on 15 March 2011 for best video released in 2010. The fourteen-minute news report compiled by reporters Samantha Bolton and the Cluster Munition Coalition, with help from an independent video-production team, was released in November 2010 at the First Meeting of States Parties to the Convention on Cluster Munitions.

Covering Laos’ history of contamination, the video provides personal glimpses into the lives of people injured, assisted, and affected economically by cluster bombs. Additionally, it highlights the clearance initiatives of governments and international organizations, while addressing the slower disease progression caused by lack of financial resources and aid needed to remove Laos’ estimated 80 million remaining unexploded ordnances. To view the video report, visit http://bit.ly/3wIio.

~Megan Sarian, CISR Staff