PHIL 470. Topics in Contemporary Continental Philosophy. 3 credits.
Intensive study of one or two major thinkers or themes in 20th-century European philosophy. Possible topics include figures such as Heidegger, Habermas, Foucault or Derrida; or themes such as phenomenology, critical theory, post-structuralism or the critique of Enlightenment ideals. May be repeated for credit. Prerequisite: PHIL 341, PHIL REL 375 or permission of the instructor.

PHIL 475. Philosophy Seminar. 3 credits.
Seminar topics may be drawn from any area or period of philosophy chosen by the instructor. The course is designed primarily for seniors majoring in Philosophy, but any suitably prepared student may take this course with the permission of the instructor. Prerequisite: Senior philosophy major or permission of the instructor. May be repeated for credit.

PHIL 490. Special Studies in Philosophy. 3 credits.
Designed to give capable students an opportunity to complete independent study in philosophy under faculty supervision.

PHIL 495. Philosophy Course Assistantship. 1-6 credits.
Students participate as course assistants in philosophy. Assistantships provide students with a sense of what it is like to teach a philosophy course by allowing them to work closely with faculty members through different phases of course preparation, presentation and evaluation. Assistantships may also provide opportunities for student assistants to lead discussion and to help their peers review the material outside of the classroom. Prerequisites: May be repeated once if assisting a different course, with six maximum total credit hours for both courses combined. Only three credit hours can apply to the major or minor.

PHIL 499. Honors. 6 credits.
Year course.

Physics

Department of Physics and Astronomy

PHYS 105. Foundations of Physics. 1 credit.
An introduction to the study of physics and the physics department. Prerequisites: PHIL 101, PHIL 250 or permission of the instructor. May be repeated once if assisting a different course, with credit for credit with change of topics. Prerequisite: PHIL 101 or permission of the instructor.

PHYS 106. Foundations of Physics Laboratory. 1 credit.
This laboratory supplement to PHYS 105. Prerequisite: PHYS 101, permission of the instructor. May be repeated for credit.

PHYS 140. College Physics I. 3 credits.
The first semester of a non-calculus sequence in general physics. Topics include principles of mechanics, thermal properties of matter, wave motion and sound. A working knowledge of algebra and trigonometry is required.

PHYS 140L*. College Physics I Laboratory. 1 credit.
The laboratory component of PHYS 140. Prerequisite: PHYS 140 with a grade of "C-" or higher.

PHYS 150. College Physics II. 3 credits.
The second semester of a non-calculus sequence in general physics. Topics include electric charges, circuits, magnetism, optics, atomic and nuclear physics. Prerequisite: PHYS 140 with a grade of "C-" or higher.

PHYS 150L*. General Physics Laboratories. 1 credit.
These laboratory courses are designed to complement and supplement the PHYS 140-150 and PHYS 240-250 lecture courses. Prerequisite or corequisite for PHYS 150L: PHYS 140 or PHYS 240. Prerequisite for PHYS 150L: PHYS 140L and either PHYS 140 or PHYS 240. Prerequisite or corequisite for PHYS 150L: PHYS 150 or PHYS 250.

PHYS 215. Energy and the Environment. 3 credits.
Energy use, sources and trends; fossil fuels, heat-work conversions, thermodynamic restrictions and electric power production; nuclear fission reactors and fusion energy; solar energy and technologies; alternative energy sources; energy storage; energy conservation; issues of waste and safety. Environmental, social and economic aspects will be discussed. Not open to ISAT majors scheduled to take ISAT 212 as part of their degree requirements. Prerequisites: One college course in science and one in mathematics.

PHYS 240. University Physics I. 3 credits.
Kinematics, dynamics, energy and momentum conservation, oscillatory motion, fluid mechanics and waves. Corequisite: MATH 232 or MATH 235.

PHYS 246. Data Acquisition and Analysis Techniques in Physics I. 1 credit.
This laboratory supplement to PHYS 246 by establishing the experimental basis of physics. Topics include conception, design and performance of experiments in physics emphasizing data acquisition, analysis of experimental data, and the handling of experimental uncertainties. Prerequisite: PHYS 240.
PHYS 247. Data Acquisition and Analysis Techniques in Physics II. 3 credits.
This laboratory complements the introductory physics lab sequence and is designed to supplement the PHYS 240 and PHYS 250 lecture courses. Topics include design, construction, and performance of sophisticated experiments in physics, computer simulation of physical processes, analysis of experimental data, including uncertainty estimation, and error propagation. Prerequisites: PHYS 250 and PHYS 246.

PHYS 250. University Physics II. 3 credits.
Electric force, fields and potentials; capacitance, dielectrics, resistance and DC circuits; magnetic fields, induced electric fields, inductance and AC circuits; geometrical optics, interference, diffraction and polarization. Prerequisite: PHYS 240 with a grade of "C-" or higher. Corequisite: MATH 238.

Rotational kinematics and rotational dynamics; static equilibrium and elasticity; universal gravitation and orbital mechanics; temperature, heat, heat engines, entropy and kinetic theory; Gaussian law, electric potential and capacitance; magnetic fields, induced electric fields and inductance; displacement current and electromagnetic waves; and the special theory of relativity. Prerequisite: "C" or better in PHYS 250 or PHYS 150. Corequisites: MATH 237 and PHYS 247 or PHYS 150L.

PHYS/MATH 265. Introduction to Fluid Mechanics. 4 credits.
Introduces the student to the application of vector calculus to the description of fluids. The Euler equation, viscosity and the Navier-Stokes equation will be covered. Prerequisites: MATH 237 and PHYS 260.

PHYS 270. Modern Physics. 4 credits.
A course in modern physics, consisting of a discussion of the experimental basis for and fundamental principles of quantum physics, with applications to atomic structure and nuclear physics. Prerequisite: PHYS 260 or permission of the instructor.

PHYS/CHEM/MATS 275. An Introduction to Materials Science. 3 credits.
An introduction to materials science with emphasis on general properties of materials. Topics will include crystal structure, extended and point defects and mechanical, electrical, thermal and magnetic properties of metals, ceramics, electronic materials, composites and organic materials. Prerequisite: CHEM 131, PHYS 150 or PHYS 250, ISAT 212 or permission of the instructor.

PHYS 295. Laboratory Apparatus Design and Construction. 1 credit.
A laboratory component of the course. Topics include concepts of radioactive decays, radiation transport and interaction with matter, basics of radiation detection devices, dosimetry, radiation therapy, X-ray production, and fission in nuclear reactors. Prerequisite: PHYS 270 or permission of the instructor.

PHYS 340. Mechanics. 3 credits.
Topics include statics, dynamics, central forces, oscillatory motion and generalized coordinates. Prerequisites: PHYS 260 and MATH 238.

PHYS/MATH 341. Nonlinear Dynamics and Chaos. 3 credits.
Topics cover the study of nonlinear dynamics and chaos intended primarily for upper-level undergraduates in science or mathematics. Topics include stability, bifurcations, phase portraits, strange attractors, fractals and selected applications of nonlinear dynamics in pure and applied science. Computers may be utilized for simulations and graphics. Prerequisites: MATH 238 and MATH 248.

PHYS 342. Mechanics II. 3 credits.
A continuation of PHYS 340 including Lagrangian dynamics, rigid body motion and the theory of small oscillations. Prerequisite: PHYS 340.

PHYS 344. Advanced Physics Laboratory I. 1 credit.
The first course in a three-course laboratory sequence. A set of advanced laboratory experiences in which students are introduced to experimentation in several areas of physics while gaining experience in experiment design, data analysis, formal report writing and presentations. Prerequisite: PHYS 247.

PHYS 345. Advanced Physics Laboratory II. 1 credit.
This is the second course in a three-course laboratory sequence. A set of advanced laboratory experiences in which students are introduced to experimentation in several areas of physics while gaining experience in experiment design, data analysis, formal report writing and presentations. Prerequisite: PHYS 344.

PHYS 346. Advanced Physics Laboratory III. 1 credit.
This is the third course in a three-course laboratory sequence. A set of advanced laboratory experiences in which students are introduced to experimentation in several areas of physics while gaining experience in experiment design, data analysis, formal report writing and presentations. Prerequisite: PHYS 345.

PHYS 350. Electricity and Magnetism. 3 credits.
A study of the electrostatic field, the magnetic field, direct and alternating currents and electromagnetic waves. Prerequisites: PHYS 260 and MATH 238.

PHYS 356. Analog Electronics (2, 4). 4 credits.
DC and AC circuits, spectral and pulse circuit response, semiconductor physics and simple amplifier and oscillator circuits. Prerequisite: PHYS 250 or permission of the instructor.

PHYS/MATH 365. Computational Fluid Mechanics. 3 credits.
Applications of computer models to the understanding of both compressible and incompressible fluid flows. Prerequisites: MATH 248, either MATH 238 or MATH 326, MATH/PHYS 265, and PHYS 340.

PHYS/MATH 366. Computational Solid Mechanics. 3 credits.
Development and application of mathematical models and computer simulations to investigate problems in solid mechanics, with emphasis on numerical solution of associated boundary value problems. Prerequisites: MATH/PHYS 266, MATH 228 and MATH 248, or permission of the instructor.

PHYS 371. Introductory Digital Electronics (2, 4). 2 credits.
Transistors, integrated circuits, logic families, gates, latches, decoders, multiplexers, multivibrators, counters and displays. Prerequisite: A grade of "C" in PHYS 150 or PHYS 250 or permission of the instructor.

PHYS 372. Microcontrollers and Their Applications (2, 4). 2 credits.
Microcontrollers, their instructions, architecture and applications. Prerequisite: PHYS 371 or permission of the instructor.

PHYS 373. Interfacing Microcomputers (2, 4). 2 credits.
A study of the personal computer and its input/output bus, input/output functions, commercially available devices, proto-typing circuit boards and programs for device control. Prerequisite: PHYS 371.

PHYS 380. Thermodynamics and Statistical Mechanics. 3 credits.
A treatment of the thermal properties of matter from both macroscopic and microscopic viewpoints. Topics include the laws of thermodynamics, heat, work, internal energy, entropy, elementary statistical concepts, ensembles, classical and quantum statistics and kinetic theory. Approximately equal attention will be given to thermodynamics and statistical mechanics. Prerequisites: PHYS 270.

PHYS/MATS 381. Materials Characterization (Lecture/Lab course). 3 credits.
A review of the common analytical techniques used in materials science related industries today, including the evaluation of electrical, optical, structural and mechanical properties. Typical techniques may include

http://www.jmu.edu/catalog/14
PHYS 398. Robots: Structure and Theory. 3 credits.
An introduction to the study of autonomous robotic platforms. Topics include robot structure, propulsion systems, robot kinematics, sensors used in robotics, and sensor integration. The course combines lectures with laboratory activities in which students will get hands-on experience in designing, building, programming, and testing autonomous robotic platforms. Prerequisite: completion of the basic preparation courses required for the robotics minor or permission of the instructor.

PHYS 399. Computer Applications in Physics. 3 credits.
Applications of automatic computer simulation in the study of various physical systems. Problems are taken from mechanics of particles and continua, electromagnetism, optics, quantum physics, thermodynamics and transport physics. Prerequisites: MATH/CS 248, PHYS 240, PHYS 250 and six additional credit hours in major courses in physics, excluding PHYS 380, PHYS 371 and PHYS 372.

PHYS 391-392. Seminar. 1 credit per year.
Participation in the department seminar program. Prerequisites: Junior or senior standing and permission of the instructor.

PHYS 397. Topics in Physics. 1-4 credits each semester.
Topics in physics at intermediate level. May be repeated for credit when course content changes. Topics selected may dictate prerequisites. The student should consult the instructor prior to enrolling. Prerequisite: Permission of the instructor.

PHYS/ASTR 398. Independent Study in Physics or Astronomy. 1-3 credits, repeatable to 4 credits.
An individual project related to some aspect of physics or astronomy. Must be under the guidance of a faculty adviser. A student may not earn more than a total of four credits for PHYS/ASTR 398.

PHYS 420. Modern Optics. 3 credits.
A study of the kinematic properties and physical nature of light including reflection, refraction, interference, diffraction, polarization, coherence and holography. Prerequisites: PHYS 260, PHYS 270 and MATH 237.

PHYS 446. Electricity and Magnetism II. 3 credits.
A continuation of PHYS 350. Emphasis will be placed on the solutions of Maxwell's equations in the presence of matter, on solving boundary-value problems and on the theory of electromagnetic radiation. Prerequisite: PHYS 280.

PHYS/CHM 455. Lasers and Their Applications to Physical Sciences. 3 credits.
An introduction to both the theoretical and practical aspects of lasers and their applications in the physical sciences. Prerequisite: PHYS 270, CHM 351 or permission of the instructor.

PHYS 460. Quantum Mechanics. 3 credits.
Principles and applications of quantum mechanics. Topics include wave functions and the uncertainty principle, the Schrödinger equation, one-dimensional potentials, operators and eigenvectors, three-dimensional motion and angular momentum and the hydrogen atom. Prerequisite: PHYS 280.

PHYS 491-492. Physics Assessment and Seminar. 1-3 credits each semester.
Principal course activities are participation in the departmental assessment program and attendance at departmental seminars. Prerequisite: PHYS 392.

PHYS 494. Internship in Physics. 1-6 credits.
Students participate in research or applied physics outside of the university. A proposal must be approved prior to registration, and a final paper will be completed. Prerequisites: Radiation effects with a minimum of 12 physics credit hours and permission of the department head and the instructor.

PHYS 497. Topics in Physics. 1-4 credits each semester.
Topics in physics at the advanced level. May be repeated for credit when course content changes. Topics selected may determine prerequisites. Students should consult the instructor prior to enrolling. Prerequisite: Permission of the instructor.

PHYS/ASTR 498R. Undergraduate Research in Physics or Astronomy. 1-4 credits, repeatable to 6 credits.
Research in a selected area of physics as arranged with a faculty research adviser. A student may not earn more than a total of six credits for PHYS/ASTR 498R. Prerequisite: Proposal for study must be approved prior to registration.

PHYS 499. Honors. 6 credits. (Year course, 3 credits each semester).
Participation in this course must be approved during the second semester of the junior year.

Political Science

Department of Political Science

GPOS 200. Global Politics. 3 credits.
An exploration of political, social, and economic issues and structures existing within and between states in the contemporary global community. Students are introduced to alternative approaches to analyzing these issues in diverse cultures and political settings.

GPOS 201. Introduction to Western Political Theory. 3 credits.
A general survey of Western political theory from Plato to Marx, order and freedom.

GPOS 225. U.S. Government. 4 credits.
An examination of institutions, processes and intellectual concepts, which structure American political activity. The interaction of the political system with the changing American society and America's changing role in world affairs are also treated. The course provides an introduction to quantitative methodology.

GPOS 230. International Relations. 3 credits.
A survey of the field of international relations including consideration of the elements of national power, foreign policy, diplomacy, propaganda, foreign aid, war, international law and international organization.

GPOS 240. Comparative Politics. 3 credits.
A comparative study of selected political systems. Emphasis is on the structure of government, the political process and the conditions which either promote or constrain political change and stability.

GPOS 295. Research Methods. 4 credits.
Students learn how to conduct original research from theory formulation through data collection and hypothesis testing. Special emphasis on research and computer literacy. Prerequisite: MATH 220.

GPOS 300. Politics and Film. 3 credits.
This course examines the relationship between politics and film, broadly construed. The ability of film to inform and promote agendas on key political issues, and the way in which films reflect the world of ideas and political culture in which they are created will be explored in substantive areas that may include: social and political change, human rights and justice, the portrayal of political processes and institutions, and foreign policy.

GPOS 301W. The Washington Semester Experience. 3 credits.
A study of the manner in which the policy making process is conducted on the federal level. The function of political and governmental institutions in establishing public policy is examined through readings and observation. Prerequisite: Enrollment in the Washington Semester program.

GPOS 302. State and Local Government. 3 credits.
A study of state and local government in the United States with particular focus on Virginia. Emphasis is placed on an understanding of the framework, functions and problems of state and local governments.

GPOS 310. Political Theory: Ancient to Early Modern. 3 credits.
A study of political theory from Plato and Aristotle through Machiavelli with analysis of such political concepts as the nature of the state, political obligation, justice, progress, ethics, and politics and the relationship between the individual and the human polity.

GPOS 316. Contemporary Political Theory. 3 credits.
An examination of political thinkers and their ideas from the end of the 19th century to the present. Special emphasis will be placed on the writings of Hannah Arendt, Jürgen Habermas, John Rawls and other contemporary thinkers who continue to engage in the pursuit of political inquiry.

GPOS 321. Political Theory and Ideology. 3 credits.
A study of the relationship between normative political theory and ideology, emphasizing the philosophical foundations of modern political thought and its relationship to the emergence of various ideological positions in the 19th and 20th centuries. Includes a study of liberalism, conservatism, socialism, anarchism, nationalism, fascism, feminism, environmentalism and others.

GPOS 325. Constitutional Law. 3 credits.
A study of the legal aspects of the American democratic system. The development of the Constitution will be explored and case studies used to portray important events and changes.

http://www.jmu.edu/catalog/14