School of Engineering

Dr. Ronald G. Kander, Director
Phone: (540) 568-8110
Location: Health & Human Services Building, Room 3228
E-mail: kanderrg@jmu.edu
Web site: http://www.jmu.edu/engineering/

Mrs. Tiffany L. Newbold, Coordinator for Students
Phone: (540) 568-8988
Location: Health & Human Services Building, Room 3215
E-mail: newboltl@jmu.edu

Associate Professors
E. Pappas, B. Striebig

Assistant Professors

Mission Statement
James Madison University engineering graduates will improve the sustainability of our world by participating in projects in which they analyze problems and design solutions in the context of environmental, energy, financial, and social impacts.

Objectives
The JMU engineering program empowers and motivates students to engineer systems for sustainable societies by:
- analyzing and solving real-world human problems.
- modeling, simulating and testing complex interdependent socio-technical systems.
- integrating business, social, and ethical aspects into engineering solutions.
- working effectively in interdisciplinary teams and international environments.
- managing engineering projects in a timely and cost-effective manner.
- communicating effectively with diverse audiences.
- striving toward lifelong learning and creative critical thinking.

The Bachelor of Science in Engineering is a single engineering degree that spans the traditional engineering disciplines and includes course work in science, mathematics, business, technology management, engineering, design and interpersonal communication skills. The themes of the program are sustainability, engineering design and systems analysis.

Engineering for a sustainable world is, in short, a body of knowledge and set of holistic analytical design skills that contribute to the development of products, processes, systems, and infrastructures that simultaneously protect the environment, conserve resources, and meet human needs at an acceptable financial cost. By reframing traditional engineering practice, sustainability provides a way of moving toward the development of sustainable societies, where human quality of life is advanced with a minimum impact on finite resources and the environment.

Sub-disciplines of engineering, such as mechanical, electrical or chemical will not be offered in this program. Rather, a broad-based engineering program that spans many areas of engineering will be emphasized to train engineering versatilists who are aware of the need for sustainability in the products, processes, and engineering systems they design.

The curriculum is designed to meet all engineering accreditation standards and to prepare students to pass the Fundamentals of Engineering (FE) pre-licensure examination. Graduates will be prepared to succeed in the engineering workforce or in advanced engineering degree programs by exhibiting the practical ingenuity of an engineering versatilist.

Career Opportunities
Upon graduation, alumni will be prepared for a wide range of opportunities in the engineering workforce or in engineering graduate school. Typical fields of engineering that students will be prepared to enter include applications engineering, process design, product design, process engineering, project engineering and systems engineering. Other industry options include product service, technical sales, management training and technical marketing.

A wide range of graduate school options include master's and doctoral programs in civil engineering, environmental engineering, industrial engineering, materials engineering, mechanical engineering and systems engineering. Other post-graduation options include business school, law school, AmeriCorps, Peace Corps, military service, entrepreneurship (starting a small business), applied science fields, international experiences, medical school and careers in politics/public policy.

Some examples of the industries that hire engineers include, among others, aeronautic firms, airports, automobile manufactures, colleges and universities, computer service and software firms, consulting firms, energy systems firms, engineering firms, federal contractors, federal, state and local governments (e.g., NASA, EPA, NIST, DOD, DOE), non-profit agencies, manufacturing firms, inspection agencies, mining and petroleum firms, pharmaceutical and medical research companies, research and development laboratories, telecommunication companies, and waste management and recycling firms.
Progression Standard and Prerequisite Chain

Students have two targets to watch while planning their engineering curriculum: the progression standard and the prerequisite chain.

Progression Standard

Engineering students must meet the following progression standard before being admitted into junior-level (ENGR 3xx) or senior-level (ENGR 4xx) engineering courses. The lowest grade of record for any of the following required in-major courses is a “C-.”

- ENGR 112, ENGR 212, ENGR 221, ENGR 231, ENGR 232
- MATH 235, MATH 236, MATH 237, MATH 238
- PHYS 240, PHYS 140L, PHYS 250, PHYS 150L
- CHEM 131, CHEM 131L, CHEM 132L

A student’s overall GPA and required major GPA (for the same list of courses) must be at least 2.500 (no rounding).

Prerequisite Chain

Engineering students should be aware that many courses include prerequisites, or courses that must be successfully completed before enrollment in a specific course. The following list includes prerequisites that students should consider when planning their courses of study.

Course Prerequisite Course(s)

- ENGR 112 — MATH 235, PHYS 240, PHYS 140L
- ENGR 212 — ENGR 112, PHYS 250, PHYS 150L, & MATH 238
- ENGR 221 — ENGR 112
- ENGR 231 — ENGR 112
- ENGR 232 — ENGR 231
- Required ENGR 3xx Courses — All required ENGR 2xx Courses
- ENGR 332 — ENGR 331
- Required ENGR 4xx courses — All required ENGR 3xx Courses
- ENGR 432 — ENGR 431
- ENGR 412 — ENGR 411

1 Course may be taken concurrently as a corequisite.

Degree and Major Requirements

Bachelor of Science in Engineering

<table>
<thead>
<tr>
<th>Required courses</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Education¹</td>
<td>41</td>
</tr>
<tr>
<td>Quantitative requirement²</td>
<td>3</td>
</tr>
<tr>
<td>Scientific Literacy requirement²</td>
<td>3-4</td>
</tr>
<tr>
<td>Major requirements (listed below) and electives</td>
<td>73-77</td>
</tr>
<tr>
<td>Total</td>
<td>120</td>
</tr>
</tbody>
</table>

1 The General Education program contains a set of requirements each student must fulfill. The number of credit hours necessary to fulfill these requirements may vary.
2 In addition to course work taken to fulfill General Education requirement.

Recommended Schedule for Majors

First Year

Fall

- MATH 235. Calculus I¹ — 4
- PHYS 240 & 140L. University Physics I & Laboratory² — 4
- General Education³ — 6
- Total — 14

Spring

- MATH 236. Calculus II — 4
- PHYS 250 & 150L. University Physics II & Laboratory — 4
- ENGR 112. Introduction to Engineering — 3
- General Education³ — 3
- Total — 14

Second Year

Fall

- MATH 237. Calculus III — 4
- CHEM 131. General Chemistry I
- and 131L & 132L. General Chemistry Laboratories — 1
- ENGR 231. Engineering Design I — 1
- General Education — 6
- Total — 16

Spring

- MATH 238. Linear Algebra and Differential Equations — 4
- ENGR 212. Engineering Statics & Dynamics — 4
- ENGR 232. Engineering Design II — 1
- ENGR 221. Management of Technology — 3
- GEOL 210. Applied Physical Geology
- or BIO 222. Issues in Biology: An Interdisciplinary Approach — 3
- Total — 15

Third Year

Fall

- ENGR 311. Thermal-Fluids I + Lab — 4
- ENGR 313. Circuits and Instrumentation — 4
- ENGR 322. Management of Technology II — 3
- ENGR 331. Engineering Design III — 2
- General Education — 3
- Total — 16

Spring

- ENGR 312. Thermal-Fluids II + Lab — 4
- ENGR 314. Materials and Mechanics + Lab — 4
- ENGR 332. Engineering Design IV — 2
- Technical elective — 3
- General Education — 3
- Total — 16

Fourth Year

Fall

- ENGR 411. Sustainability Fundamentals — 3
- ENGR 413. Systems Analysis — 3
- ENGR 431. Engineering Design V — 2
- Technical elective — 3
- General Education — 4
- Total — 15

Spring

- ENGR 412. Sustainability II — 3
- ENGR 432. Engineering Design VI — 2
- Technical elective — 3
- General Education — 6
- Total — 14

¹ Also fulfills General Education requirement for Cluster 3, Group 1 (Mathematics)
² Also fulfills General Education requirement for Cluster 3, Group 2 (Science)
³ 3 fulfills General Education requirement for Cluster 1 (Skills for the 21st Century)
4 Engineering only sections of labs
5 Also fulfills General Education requirement for Cluster 3, Group 3 (Science)